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本日の内容 
1. 海洋内部波の特徴 
2. 海洋内部波の重要性 
3. 海洋内部波の物理（線形理論) 
4. 海洋内部波の励起 
5. 海洋内部波の普遍平衡スペクトル 
6. 海洋内部波の非線形相互作用�
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Fig. 1. Segments of the 6.90øC and 6.45øC isotherm records from Misery 1. 

and 

½•: = arctan (C•:)/(Q•:) (2) 
where the angle brackets designate averages over the desired 
frequency range. We use instead 

Rx:: = (Rt cos 4h): + (Rt sin ½t): (3) 
and 

•,•-= <•,> (4) 
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Fig. 2. Temperature and buoyancy frequency profiles in the area 
from California Cooperative Fisheries Investigation data. These 
are averages of data taken in the month of June for several dif- 
ferent years. 

where i is spectral band number and Rt and ½t are coherence 
and phase estimates within each narrow frequency interval 
(bandwidth 0.044 Cph). In (1) and (2), coherence and phase 
estimates at a particular frequency enter into the average with 
a weighting proportional to the energy at that frequency. In 
the present case this would heavily weight the energetic lowest 
frequencieg. This is largely avoided by USing (3) and (4), which 
tend to weight contributions to the average equally regardless 
of the energy distribution. 

There are two interesting results evident in the low-fre- 
quency averages. First, the average phase differences remain 
essentially zero, implying that over this low-frequency range 
there is little net vertical transport of internal wave .energy 
(Figure 4). Second, the coherence decreases linearly with verti- 
cal separation and approaches unity as t. he separation goes to 
zero (Figure 4). The implications of this second result are 
explored in the following sections. 

MISERY AND THE GARRETT-MUNK MODEL 

This section of the paper was suggested by Christopher 
Garrett and Walter Munk and was written in collaboration 
with them. 

The Power Spectrum 
Garrett and Munk [1972, 1975] have proposed an internal 

wave model in which the displacement cospectrum away from 
ocean boundaries and turning frequencies is (for more detail 
see the appendix, Garrett and Munk [1972, 1975], and Cairns 
[1975]) ' 

C12(0.), j, Z) = «b:E(no/n)G(w)HO ') cos (j no _•) (5) n 

subject to 
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G(w) dw • 1 •'] H(j) = 1 (6) 
½ 

where 

•)•/• 4 •(• -- • 4 • G(•) = - • • • • • • (7) 

and in the GM75 model 
•(j) = t- • j, = • t = 5/2 (S) (• • j/j,)' 

The G M75 model defines a stratification scale depth b (1.3 km) 
for an exponential model n = hoe -•, where •0 (3 cph) is the 
buoyancy frequency at the top of the thermocline. The 'local' 
vertical •avenumber is jz(no/n)b -•, and E(6.3 • l0 -•) is a 
dimensionless energy. 

The normalization'is such that for vertical separation Z, 

i i•1 

where for the particular case Z = 0, Cx•(•, j, 0) • Cxx • 
Sx(•, j), giving 

• • d• • S(•, j)• •b•E(no/n)• (10) 

•e displacement power spectrum is 

s(•) • • s(•. j) = }b:•(.o/.)a(•) (• •) 
For convenience in the present case we choose somewhat 
different values of b (1000 m) and d0 (6 cph), where d0 is the 
buoyancy frequency extrapolated to the sea surface. These 
seem more suitable for the depth of the Misery experiment. To 
maintain the energy density given in the GM72 model, we set 
E 5.3 X 10 -•. The spectrum from (11 ) in the range &• < & < = 
0.Sd (shown as a segment of the light line in Figure 3 (top)) is 
in good agreement in both slope and level with the observed 
spectrum. 

In the GM72 model [Garrett and Munk, 1972, equation 6.7], 

•(•) = -•, •,+• (•2) 

where s is a parameter which governs the shape of the spec- 
trum near •. The domain ors must be 0 • s • 1 to give the 
observed integrable cusp [e.g., Fofono• 1969] in the horizon- 
tal velocity spectrum at the inertial frequency. The displace- 
ment spectrum near • (Figure 5) is not very sensitive to s, and 
s = } as chosen arbitrarily in the GM72 model seems reason- 
able. A more definitive statement on s requires higher spectral 
resolution at the inertial frequency. 

•ertical Coherence 

The GM75 vertical coherence, written here for discrete 
modes, is 

•.•(•. z) = c1•(•. z)/[Cl.(•)c•(•)] '• 

= • H(j) cos [j•(n/no)(Z/b)] (13) 
i=1 

Notice R•z(•, Z) • R::(Z), independent of frequency for • << 
n. If we assume that the loss of coherence with vertical separa- 
tion is due to modal bandwidth, the observed linear decrease 
of coherence with separation suggests that modal energy is 
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Fig. 3. (Top) Displacement spectrum oœthc 6.60ø(2 isotherm œrorn 

Misery I and 3. For w > 0.1 cph the spectral estimates have 74 d.f. For 
w < 0.1 cph they have 18 d.f. The smooth line is the spectrum from 
Garrett and Munk [1972] in the range wt < w < 0.$n and from a•slightly 
revised model (equation (16)) for w > 0.$n. (Middle) Coherence (not 
squared) over the 36-m separation between the 6.90øC and 6.45øC 
isotherms from Misery 1. If the signals were truly incoherent, the 
estimated coherence would fall below the dashed line 95% of the time. 
The smooth line is a model computation. These estimates have 22 d.f. 
(Bottom) Phase difference between the same isotherms. At a coherence 
of 0.85, if the signals were truly in phase, the estimated phase would 
fall within the bounds shown 95% of the time. 

distributed by some H{j) which behaves like j-" for largej. We 
adopt the modal weighting (somewhat different from the 
GM75 model) 

H(j) = (J" + J*")-: (14) 
Eu'+ ], ) 
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FIGURE 14. Stages in the growth of an oxceptiondly large breaker ( A ,  260 em; 2a, 60 cm). 
Note the 10 ern markings on the scale at bottom right. 
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restored to the climatological September field at all loca-
tions and depths in the model ocean interior with a time
scale of 30 days (note that the use of the restoring in the
ocean interior is limited to the preexperimental run). The
purpose of the preexperimental stage is to remove the effect
of initial adjustment processes in the model ocean. In fact,
we find that the magnitude of the internal wavefield at the
end of this run is negligible compared to that in the
experimental stage. The final state of the preexperimental
run is employed as the initial condition for the experimental
stage starting from 1 September 1990. During the experi-
mental stage, the model is time advanced for 15 months.
[17] For the analysis in sections 3 and 4, we use the

calculated results during the final 12 months. The model
results, u = (u, v), w, and p, are saved every 1 h, where u is
the baroclinic horizontal velocity vector, w is the baroclinic
vertical velocity obtained from u and v using the equation of
continuity, and p is the baroclinic pressure perturbation
obtained from P by subtracting the depth average. These
variables are then filtered out to retain frequencies, w,
>0.8f0, where f0 is the local inertial frequency. Unless

otherwise stated, internal wave energy and/or near-inertial
energy in sections 3 and 4 are calculated using the high-
pass-filtered components. However, responses near the
equator are outside the scope of the present study because
internal wave motions are indistinguishable from other low-
frequency motions.

3. Results
3.1. Brief Overview of Ocean Response

[18] A sample snapshot of the calculated vertical velocity
perturbations at 1000 m depth and a snapshot of the
calculated meridional velocity perturbations along 177!W
are shown in Figures 2a and 2b, respectively. Superimposed
on Figure 2a are contours of wind stress magnitude with the
interval of 0.2 N m!2. Figures 2a and 2b demonstrate that
the internal waves excited behind traveling midlatitude
storms propagate equatorward and downward while creat-
ing vertical mode structures.
[19] Extended sample time series of the calculated wind

energy input and meridional velocity perturbations at 34!N,

Figure 2. (a) A snapshot of the calculated vertical velocity perturbations at 1000 m depth on 18 January
1991. Superimposed are contours of wind stress magnitude with the interval of 0.2 N m!2. (b) A snapshot
of the calculated meridional velocity perturbations along 177!W on 18 January 1991.

C09034 FURUICHI ET AL.: GLOBAL MAPPING OF NEAR-INERTIAL WAVES

4 of 13

C09034
ɒß)½$ȚȺȿɄɊȚɀɇǯȁȃ0ČǞȅǥǄ

oä¹ŢüǱ/ƀìǱĦƉ4�ɋåóƤƣƣƣƻǱƄĘîųɌ 

Furuichi"et"al."(2008)�



®Õ�îųŘXCPȈ9đǟǪ"
ȬɆȌð�Ǳŭ&ǫŖøǞȅǥ"
å�îųǱƄĘȴɅȲȉȌɃ"

®Õ�îųŘXCPǱ®+�

ƪ�

Nagasawa"et"al.(2002)�



④ðí/ƀìǱÇź�ŌȜȶȔȧɃ"

ðíó�ǫŖøǞȅȄ/ƀìȜȶȔȧɃǱ�ĉǬŔÔCǟǥȎȫɃȓɊ"
ɄȵɃǗi¬ǿÆƉǯ{ȂǢǸǹ�yǯ"ǥȅǪǒȄǍ"
ǇGarreL:Munk(GM)ȜȶȔȧɃǍ"

has lower amplitude with little change in spectral slope at
high frequency (Figure 5). We anticipate results presented
below by stating here that annual average spectral levels at
Site D tend to be larger than those at other places, and thus,
being a fit to wintertime conditions, the Garrett and Munk
model is a poor description of the background internal
wavefield in much of the world ocean.
[54] Despite the vertical spectrum being defined using

data obtained elsewhere, recent vertical profile data data
from Site D are remarkably consistent with the GM76 model
(1/(m*

2 + m2)) (Figure 6). Wintertime conditions exhibit both
enhanced spectral levels (amplitude factors of 2.75 versus
1.75) and relatively more variance at low modes ( j* = 4–5
versus j* = 10) than summertime data. Wintertime conditions
also exhibit larger ratios of kinetic to potential energy at high
wavenumber, implying an increased input of near‐inertial
energy during wintertime and relaxation to higher frequencies.
3.3.2. The Sargasso Sea
[55] A large number of experiments have been located in

the Sargasso Sea over the Hatteras Abyssal Plain. On the
southern side of the Gulf Stream, this region exhibits an
energetic eddy field having significant north‐south gra-
dients. Eddy energy levels are typically less than noted at
Site D. A tidal (M2) peak is apparent in the temperature and
velocity spectra. Müller et al. [1978] find that fluctuations at

this frequency have larger characteristic vertical scales than
the internal wave continuum, and there is evidence of sim-
ilar features at the first several harmonics. From current
meter data at 28°N, 70°W, Noble [1975] and Hendry [1977]
estimate net fluxes at M2 to be to the southeast and infer the
source to be the Blake Escarpment, near the western bound-
ary. Alford and Zhao [2007], on the other hand, document net
semidiurnal fluxes to the north‐northwest (at 31°N, 69° 30′W)
and southwest (at 34°N, 70°W).
[56] The bottom near midbasin is well sedimented and

smooth at 28°N, 70°W, the locus of the Mid‐Ocean
Dynamics Experiment and the Internal Wave Experiment.
Rougher topography is noted to the east. (One also finds
mud waves. Mud waves are sedimentary features of 1–10 km
horizontal wavelength having amplitudes of tens to hundreds
of meters. These horizontal scales are appropriate for the
generation of freely propagating internal lee waves (with
Eulerian frequency s = 0) if the intrinsic frequency w = s −
p · u lies between the Coriolis and buoyancy frequencies:
f ≤ p · u ≤ N. Significant coupling between the “mean”
and internal wavefield is anticipated at mean flow rates of
0.1–0.2 m s−1. Sediment transport is an issue at such flow
rates and the possibility exists that the lee wave velocity
perturbations affect the deposition and erosion process so as
to reinforce the mud waves [Blumsack, 1993]. But this gets

Figure 2. Site D frequency spectra of horizontal kinetic energy (blue lines). These are the Site D data
that appeared in the original GM72 paper. Black curves represent fits of (21) with r = 2. The thick vertical
lines represent the buoyancy frequency cutoff. The spectra have been offset by 1 decade for clarity.
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Figure 3 together with the region of strong inertial currents
with the amplitude exceeding 0.7 m s!1. We can see that,
corresponding to the traveling midlatitude storm, the wind
stress curl field shifts eastward at the speed of about 20 m s!1;
after the passage of the midlatitude storm, strong inertial cur-
rents are seen to be excited in the area of 160"–170"E and
35"–40"N.

To examine spatial distribution of atmospheric disturbances
which excite the mixed layer inertial currents, annual mean
field of the inertial current amplitude in the mixed layer is
shown in Figure 4. Superimposed are the contours of the
horizontal distance from the center of the four mooring loca-
tions, namely, 165"E and 30"N. The large-amplitude inertial
currents are found to occur in the midlatitude band (30"–50"N)
corresponding to the passages of midlatitude storms such as
shown in Figure 3. It is interesting to note that the largest
inertial currents are found 500–1000 km to the north of the
mooring sites. If the generation mechanism of the double-
inertial frequency waves proposed by Niwa and Hibiya [1997] is
actually working in the real ocean, southward propagating dou-
ble-inertial frequency waves are expected to be detected at
these mooring sites.

4. Deep Ocean Internal Wave Field

4.1. Analysis of A1 Data
We first analyze the current meter data at A1, which is

closest to the region where the predominant inertial currents
are excited by midlatitude storms (see Figure 4). Figure 5
shows the frequency spectrum of horizontal kinetic energy
obtained by taking an average of all the frequency spectra for
the divided data pieces. This average frequency spectrum
shows familiar features of the deep ocean internal wave spec-
trum with the prominent peaks at the inertial frequency and
semidiurnal tidal frequency and the spectral decay at high
frequencies. It is interesting to note that except for the inertial
and semidiurnal tidal peaks, the shape and level of the average
spectrum are well approximated by those of the canonical
Garrett and Munk internal wave spectrum [Munk, 1981].

Next, to examine the temporal variation of the internal wave
field, multiple filter analysis is carried out using the band-pass
filter (1) with !n # n $ 0.0025 cph and " # 1840. Figure 6
shows time variations of the horizontal current amplitude for

Figure 5. Frequency spectrum of horizontal kinetic energy at
A1 obtained by averaging of all the frequency spectra for
divided data pieces. For comparison, the canonical Garrett and
Munk internal wave spectrum is shown by thin solid line. Note
that each spectrum is normalized by the annual mean buoyancy
frequency. The local inertial ( f ) and double-inertial (2f ) fre-
quencies and the semidiurnal tidal frequency (M2) are
marked. Shading denotes the 90% confidence range of the
spectral estimate.

Figure 6. Time variations in amplitude of horizontal current velocity at A1 for different frequencies ob-
tained by employing the multiple filter analysis [Dziewonski et al., 1969]. The amplitudes of horizontal current
velocity in centimeters per second are contoured with intervals of 0.1 in the logarithm. Shading indicates
missing data. Horizontal dotted lines indicate the local inertial ( f ) and double-inertial (2f ) frequencies and
the semidiurnal tidal frequency (M2).
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Fig. 5. Physical processes affecting internal waves. 

tant. If, for example, we are considering a part ot' the ocean 
that includes the seasonal thermocline, we should consider the 
local input from the atmosphere in the source terms (as well as 
resonant interactions and the dissipation processes, although 
the latter may be more important at high frequencies) but not 
an input from bottom topography. in the interior of the ocean 
the local generation terms may possibly be insignificant, and 
the source-sink term S dominated by resonant interactions and 
dissipation. A difficult but important problem is that o1' l'or- 
mulating the various source-sink contributions in terms o1' 
parameters of the physical processes that can be observed by 
experiments in the ocean and recognizing the limitations of ex- 
isting (or possible) measuring instruments. Experiments are 
needed (some are already planned or being made) that can 
measure the relative importance of the source-sink con- 
tributions in different parts of the ocean and identify the 
various physical processes that influence them most. 

We have briefly described the known physical processes by 
which internal waves are generated and by which they 
propagate and decay. There may be others yet unknown. It is 
not beyond our wit to decide on their relative importance, 
although their complexity is such that probably most rapid 
progress can be made by the inverse process of intbrence l'rom 
the results of experiments and observations of the waves 
themselves instead of through the direct approach, which has 
been followed here, of considering the various mechanisms 
separately and of trying to establish their relative importance 
from a calculation of the external forces acting on a part ot'the 

deep ocean. Many exciting and significant discoveries in this 
important but formidable field of research are yet to be made. 

/icknowledgment. The talk at the AGU meeting on April 9, 1974, 
was a summary based on this paper. 
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• 高緯度域で冷却されて深層へ沈み込んだ海水が長い年月をかけて全球を巡る。 
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The debate over Sandstrom's theorem continues to the present time. Further 

reference to Sandstrom's theorem may be found in many books and review articles, e.g. 

Hodske et al. (1957), Defant (1961), Dutton (1986), and Colin de Verdiere (1993).  

Many authors cite Sandstrom's theorem because they believe the theorem is based 

on sound thermodynamic principles, and nobody wants to take the risk of violating the 

second law of thermodynamics. However, the application of Sandstrom's theorem to the 

oceanic circulation does pose a serious puzzle. The ocean is mostly heated and cooled 

from the upper surface. (Compared with other sources of energy, energy due to the 

geothermal heating is much smaller; however, its contribution to the oceanic general 

circulation may not be totally negligible, as will be discussed shortly.) Due to thermal 

expansion, the sea surface level at low latitudes where heating takes place is about one 

meter higher than the sea level at high latitudes where cooling takes place. Therefore, 

according to Sandstrom's theorem, there should be no convectively driven circulation. 

Thus, the existence of the strong meridional overturning circulation in the oceans, poses a 

serious challenge for Sandstrom's theorem.  

 Fig. 2. Laboratory experiments demonstrating the Sandstrom's Theorem.  

�
�

 4

 Fig. 3. Application of the Sandstrom' Theorem to the world oceans. 

 Since heating and cooling apply to the sea surface, practically the same level, 

circulation is extremely weak, if the system has no additional mechanical energy for 

supporting the circulation, Fig. 3a. However, circulation is very strong in the world 
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Munk(1966): Abyssal Recipes 
水温と炭素同位体の鉛直分布から鉛直乱流混合係数を推定�
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uniform shear-flow. As the flow evolves, a wave-like instability grows and rolls up
into two vortices (a) that pair to create a single breaking event that is initially
mostly two-dimensional (b). Further instabilities ensue, creating a fully turbulent
and three-dimensional flow field (c).

Breaking events like this are important because molecular diffusivity on large-
scale gradients (tens of meters) is very ineffective at mixing. Mixing is ultimately
accomplished by molecular processes via Fickian diffusion, i.e., the irreversible
flux of property C is proportional to its three-dimensional gradient and the molec-
ular diffusion coefficient kC:

fC =�kC—C. (1)

For temperature, a thermodynamic tracer, kT ⇡ 10�7 m2 s�1 and for salinity and
other tracers kS ⇡ 10�9 m2 s�1. At large scales, representing the non-turbulent
flow, gradients are small and the molecular flux is slow. However, the stirring
driven by the breaking of finescale (order 10–1 m) waves, creates gradients at the
microscale (order 1 cm–1 mm). The microscale gradients can be very large, as can
be seen visually in figure 1b and c, and the molecular flux becomes significant.
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FIG. 1. Cross sections of instantaneous flow fields from simulation 1. Temperature is represented in nondimensional form as ⇥/⇥
o
in (a)–

(d): (a) t ⌅ 565 s, (b) t ⌅ 1414 s, (c) t ⌅ 4242 s, and (d) t ⌅ 6222 s. The arrow in (d) corresponds to Fig. 2. The turbulent kinetic energy
dissipation rate ⇤ is shown at (e) t ⌅ 4242 s and (f ) t ⌅ 6222 s. The scalar variance dissipation rate ⇧ is also shown at (g) t ⌅ 4242 s and
(h) t ⌅ 6222 s.

was set to 0.0099 s�1. Most of our conclusions are dem-
onstrated using only the first three simulations shown
in Table 1.
Cross sections of the evolving flow fields in simu-

lation 1 are shown in Fig. 1. Figures 1a–d show scaled
temperature cross sections taken at four instants during

the simulation. Figures 1e and 1f show the kinetic en-
ergy dissipation rate ⇤ at the latter two instants, and
Figs. 1g and 1h show the scalar variance dissipation rate
at the same two instants. [The dissipation rates ⇤ and ⇧
are defined explicitly in section 2c(3).] At t ⌅ 565 s
(Fig. 1a), a pair of primary KH billows has grown and

Figure 1: A numerical simulation of turbulent mixing (Smyth et al., 2001). The event
is triggered by a shear instability between an upper layer of warm water (red) moving
to the right and a layer of cold water (blue) moving to the left. The initial pair of
vortices (a) pair to create a single large breaking event (b). This becomes fully turbulent
and three dimensional (c) at which point there is large irreversible diffusion of the
temperature. Diffusion continues until a large volume of mixed fluid results (d).

In this example, and in the ocean in general, turbulence acts to stir the fluid,
greatly increasing the flux due to mixing, FC. It is very useful to parametrize the
turbulent flux in terms of gradients of the mean fields C. We do this by defining a
turbulent diffusivity KC so that

FC ⇡�KC—C. (2)

2

ǁ=567s� t=1414s�

t=4242s� t=6262s�

AUGUST 2001 1983S M Y T H E T A L .

FIG. 9. Evolution of various quantities describing work done against
gravity for the Pr 5 7 simulation. (a) The upper curve denotes the
total potential energy as given in (30), the lower curve denotes the
background potential energy (29), and the distance between the
curves represents the available potential energy. The shaded bar at
the top of (a) marks the approximate time of the transition to tur-
bulence. (b) Volume-averaged perturbation kinetic energy dissipation
rate (upper curve) and rate of irreversible potential energy increase
(lower curve). The ratio of the lower to the upper abcissa is Gi. (c)
Gi.

averaged u between the upper and lower boundaries
(Winters et al. 1995). The quantity we will compute to
represent the instantaneous flux coefficient is

dP /dt 2 Fb
G 5 . (32)i

^e &D

The subtraction of F isolates the irreversible work as-
sociated with fluid motion from that which would occur
in the resting state, a distinction that can be significant
in weak turbulence.
Computation of Gi requires more information than is

available in microstructure observations. We now con-
sider an alternative approach first used by Osborn and
Cox (1972). The model equations and boundary con-
ditions given in section 2a imply the following budget
for the volume-averaged temperature variance:

d 1 1
2

u9 5 2^w9u9 u & 2 ^x & . (33),z D D7 8dt 2 2D

This may be rearranged to give an expression for the
net scalar flux

1 d
2

^w9u9& 5 2 ^x & 1 ^u9 & . (34)D D D1 2dtf2u,z
The quantity ,z is a measure of the bulk scalar gradient,ũ

given explicitly by

^w9u9 u &,z Df
u 5 . (35),z

^w9u9&D

Unfortunately, ,z cannot be assessed reliably from ob-ũ

servations as it requires prior knowledge of the buoy-
ancy flux. We must therefore approximate ,z using ei-ũ

ther the mean gradient ^ ,z&D or the alternative bulk gra-u

dient In the DNS data, ,z exceeds the mean gradientc
u ũ,z

by as much as a factor of 3 in preturbulent overturns,
but becomes more nearly equal to the mean gradient as
turbulence develops. The behavior of is the opposite:c

u,z
it approximates the mean gradient early on, but is small-
er than the mean gradient late in the flow evolution as
turbulence becomes layered (Fig. 2). Thus, the mean
gradient provides a better estimate of ,z than does c

ũ u,z
Accordingly, we follow the usual practice of using the
mean gradient in the Osborn–Cox approximation.
In addition, stationarity is usually assumed in the

analysis of observational data, so that the time derivative
in (34) may be neglected. Dividing (34) by the volume-
averaged dissipation rate and multiplying by g then
gives:

g^w9u9& g^x &D D
[ G 5 . (36)d

^e & 2^u & ^e &D ,z D D

Of necessity, the volume averages ^ &D are replaced( )
by vertical averages between the upper and lower patch
boundaries and isotropic approximations are employed
for the dissipation rates:

g^x &z
G 5 . (37)d 2^u &^e &,z z

b. Flux coefficient evolution in simulated flows

In Fig. 9 we show various aspects of potential energy
evolution for the case Pr 5 7. Early in the simulation,
most of the work done against gravity is reversible, that
is, it contributes to the available potential energy (Fig.
9a). The latter grows to a maximum near t 5 1600 s,
then decreases rapidly (i.e., the billow breaks). The
background potential energy grows monotonically and,
ultimately, becomes equal to the total potential energy
as vertical motions decay.
In Fig. 9b, we see that the rate of irreversible work

done against gravity peaks quite early in the simulation.
In fact, it peaks as the billow is breaking. Note that
about one-third of the net potential energy gain in this
simulation occurred before the transition to turbulence!
The dissipation of kinetic energy, in contrast, peaks near
t 5 3000 s, after the transition to turbulence is complete.
This offset between maximum irreversible work and
maximum kinetic energy dissipation leads to large val-
ues of Gi early in the simulation (Fig. 9c; Winters et al.
1995; Caulfield and Peltier 2000; Staquet 2000). This
highly efficient mixing occurs primarily in the braids
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�¸ų��C0 = ± g H1 + H 2( ) × 1+O δ( )( )
 
δ  ′g
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= Δρ

ρ2
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η2 =
H2
H η1 1+O δ( )( )

u1 = ± g
Hη1 1+O δ( )( )

u2 = ± g
Hη1 1+O δ( )( )
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η2 = −
ρ2H
ΔρH2

η1 1+O δ( )( )

u1 = 
′g H2
H1H

η2 1+O δ( )( )

u2 = ± ′g H1
H2H

η2 1+O δ( )( )
η2
η1

≈ ρ
Δρ ≈103

%%%%������η1��cm%
�→��	����η2���m�

u1H1 +u2H2 =
′g H1H2
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ɉŭ�1:"Rigid'lidɋƅȳȡɌŭ�ǋ←ȭɅȔɂȽɊȨ"

ǋǋƟǋǋǋǇðōƕǯȲȡȈǡȄɋη1=0)ǍȲȡǱ�Ǳa=PsȈ�+Ǎ"
  η1 η2 ~Δρ ρ ~10

−3

ɉŭ�2:"ȳțȫȜȔŭ�Ɵ←"¨£Ɨɋ>ų�ƗɌǱ|��(ρ1=ρ2)ȈĄŕǍ"

ǋǋǋǋǋǋǋǋǋǋǋǋǋǋǋǋǋï=Ɨ(g’ǱƗɌǱǻǯ|��(Δρ≠0)ȈĿ©ǡȄǍǋǋǋǋǋǋǋ"



ƧƦ�

∂u1

∂t
= − ∂Ps

∂x
∂u2

∂t
= − ∂Ps

∂x
− ′g ∂η2

∂x

− ∂η2

∂t
+ H1

∂u1

∂x
= 0

  ∂η2

∂t
+ H 2

∂u2

∂x
= 0

uBC = u2 − u1
ηBC =η2

∂uBC
∂t

= − ′g ∂ηBC

∂x
∂ηBC

∂t
+ H1H 2

H1 + H 2

∂uBC
∂x

= 0

Rigid:Lidŭ�ɎȳțȫȜȔŭ�� ȭɅȔɂȪȤȔȽɊȨl½�

ȭɅȔɂȪȤȔȽɊȨÀģ��

�¸ų��
 
C = ′g H1H 2

H1 +H 2

∂2ηBC

∂t 2
= ′g H1H 2

H1 + H 2

∂2ηBC

∂x2ìAÀģ��
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∂u1
∂t

= −g ∂η1
∂x

+ fv1

∂v1
∂t

= −g ∂η1
∂y

− fu1

∂u2
∂t

= −g ρ1
ρ2

∂η1
∂x

− ′g ∂η2
∂x

+ fv2

∂v2
∂t

= −g ρ1
ρ2

∂η1
∂y

− ′g ∂η2
∂y

− fu2

∂η1
∂t

− ∂η2
∂t

+ H1
∂u1
∂x

+ ∂v1
∂y

⎛
⎝⎜

⎞
⎠⎟
= 0

∂η2
∂t

+ H 2
∂u2
∂x

+ ∂v2
∂y

⎛
⎝⎜

⎞
⎠⎟
= 0
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∂uBT
∂t

= −g ∂ηBT

∂x
+ fvBT

∂vBT
∂t

= −g ∂ηBT

∂y
− fuBT

∂ηBT

∂t
+ HBT

∂uBT
∂x

+ ∂vBT
∂y

⎛
⎝⎜

⎞
⎠⎟
= 0  

 (HBT ≡ H1 + H 2 )

∂uBC
∂t

= − ′g ∂ηBC

∂x
+ fvBC

∂vBC
∂t

= − ′g ∂ηBC

∂y
− fuBC

∂ηBC

∂t
+ HBC

∂uBC
∂x

+ ∂vBC
∂y

⎛
⎝⎜

⎞
⎠⎟
= 0  

 (HBC ≡ H1H 2

H1 + H 2

)

  f = 2Ωsinθ
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uBC = uBCe
i(kx+ly−ωt )

vBC = vBCe
i(kx+ly−ωt )

ηBC = ηBCe
i(kx+ly−ωt )    

−iω − f i ′g k
f −iω i ′g l

iHBCk iHBCl −iω

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

uBC
vBC
ηBC

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
0
0
0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

ȭɅȔɂȪȤȔÀģ�ǯ�+�
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ω2 = f 2 + ′g H1H 2

H1 +H 2
k2 + l2( )
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ω2 = f 2 + g H1 +H 2( ) k2 + l2( )
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   �

L= 2π
k2 + l2

→∞ ⇒ ω→ f �����������( )

L= 2π
k2 + l2


g H1 +H 2( )

f
����	��
�
�������

O(1000)km( )⇒ ω2 = g H1 +H 2( )κ2

L= 2π
k2 + l2


′g H1H 2
H1 +H 2

f
�������
�
�������

O(100)km( )   ⇒ ω2 = ′g H1H 2
H1 +H 2

κ2
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ρ∗
∂u
∂t +u ∂u

∂x + v∂u
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∂z
⎛
⎝
⎜⎜⎜

⎞
⎠
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∂x +ρ∗ fv
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∂v
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⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟=−

∂p
∂y −ρ∗ fu

ρ∗
∂w
∂t +u ∂w

∂x + v∂w
∂y +w∂w

∂z
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟=−

∂p
∂z −ρg

     ∂u
∂x + ∂v

∂y+ ∂w
∂z = 0

     ∂ρ
∂t +u ∂ρ

∂x + v∂ρ
∂y +w∂ρ

∂z = 0

gý|�ɋ�y$Ɍ←ȳțȫȜȔŭ��  ρ∗
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Fig. 3.3: Profiles of N2 (panel a) and N (panel b) at 40�N in the Pacific Ocean (WOCE
section P14, see Figure 1.6). In a, the noisy thin black line shows N2 obtained from
(1.1), using the original data at pressure intervals of 2 dbar; the inserted figure shows
a zoom. The blue thick line shows the result of smoothing by taking the running mean
over 15 points (i.e. stretches of 30 dbar); moreover, incidental negative values are set
equal to zero. Panel b shows the square root of the smoothed profile of panel a.

3.5.1 A fluid in thermodynamic equilibrium

The state of thermodynamic equilibrium is special from a fundamental point of
view, because of all the states with the same energy (i.e. internal plus potential
energy) and the same mass, the equilibrium state has the largest entropy. Any
isolated body of fluid will evolve toward thermodynamic equilibrium, due to
molecular di�usion; the eventual state is one in which temperature and chemical
potential are uniform (Figure 3.4, upper panels).

In thermodynamic equilibrium, then, temperature is uniform, T0(z) = Tc.
If no salt is present (Sc = 0), then the stratification follows from (3.12) as

N2 =
�2Tcg2

cp
. (3.13)

The right-hand side is always positive, so a fluid in thermodynamic equilibrium
is always stably stratified. This conclusion holds a fortiori if salinity is present,
since in thermodynamic equilibrium salinity increases strongly with depth (see
the end of Section 2.3.2, and Figure 3.4, upper panels), the chemical potential

45

ï=Yì½"

N z( ) = − g
ρ∗

dρ0 (z)
dz

Gerkema and Zimmerman (2008)�
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ρ = ′ρ + ρ0 z( ),  p = ′p + p0 z( )
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⎝
⎜⎜⎜

⎞
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∂x +ρ∗ fv
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⎜⎜⎜
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∂t +u ∂w

∂x + v∂w
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∂v
∂t =− 1ρ∗
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∂y − fu

∂2η
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∂u
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0=− 1ρ∗
∂ ′p
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u = u x, y,t( )P z( )
v = v x, y,t( )P z( )
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nπ
H z)

  

hn =
N0
2H 2

gπ2
1
n2

cn = ghn = N0
H
nπ



ƨƫ�

ƄĘȽɊȨìǱ��

Thorpe"(1968)"



ƨƬ�

ƄĘȽɊȨǱ��
½$ėǯƄĘȽɊȨɉ"
ĩ�åóɋ`Ë$Ɍ"
ȈæǽȄ�

N(z) ČzǱ|�"
ª�ǱiV�

d 2W z( )
dz2

+
N 2 z( )
gh

W z( ) = 0 W (i +1)+W (i −1)− 2W (i)
Δz2

+
N 2 i( )
gh

W i( ) = 0

 Wh∗
(0)= 0,W

h∗
(1)=1

ðƕ�

 Wh∗
(iq)

ð��
   h
∗,  h∗+δh∗,  h∗+ 2δh∗,

W
h∗
(i +1) = 2 − N

2 i( )Δz2
gh∗

⎛
⎝⎜

⎞
⎠⎟
W

h∗
(i)−W

h∗
(i −1)

hǱ$ȈƔ�ǯĳǖǙlǔǪǌUhǯ~ǟǪ�

Ǳ$Ȉ"
ŘĪǡȄ�

  

W
h∗
iq( )> 0,  W

h∗+δh∗
iq( )< 0

or
W

h∗
iq( )< 0,  W

h∗+δh∗
iq( )> 0

h*Ǭh*+δh*ǫð�WǱşTǗlC�

Shooting Method 

  h
∗ < hn < h∗+δh∗

`Ë$hnǲh*Ǭh*+δh*ǱƉǯtb�

Ƒ¼C�



Ʃƣ�

ČzǱ|�ª�ǱƄĘȽɊȨ�

Gill (1982)�



2.4ƄĘȽɊȨǱĘ�£�

ƩƤ�

/ƀìiǲƄĘȽɊȨǱƂǰVȇǣǫōČǫǘȄ�

   

u x, y,z,t( )= un
n=1

∞

∑ x, y,t( )Pn z( )

v x, y,z,t( )= vn
n=1

∞

∑ x, y,t( )Pn z( )

′p x, y,z,t( )= ′pn
n=1

∞

∑ x, y,t( )Pn z( )

w x, y,z,t( )= wn
n=1

∞

∑ x, y,t( )Wn z( )

′ρ x, y,z,t( )= ′ρn
n=1

∞

∑ x, y,t( )N 2 z( )Wn z( )



Ʃƥ�

 

n≠ m→ N 2

−H

0

∫ z( )Wn z( )Wm z( )dz= 0   

               Pn z( )Pm z( )
−H

0

∫  dz= 0   

ĕǮȄȽɊȨǱƄĘȽɊȨƊ½ǲĘ�ǡȄ�

 

  Wm×
d 2Wn z( )
dz2 +

N 2 z( )
ghn

Wn z( )
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟dz−H

0

∫ = 0

  Wn×
d 2Wm z( )
dz2 +

N 2 z( )
ghm

Wm z( )
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟dz−H

0

∫ = 0

ŚÃ�

 −
�
�
�
��



ƩƦ�
   

un x, y,t( )=
u x, y,z,t( )Pn z( )dz

−H

0

∫
Pn
2 z( )dz

−H

0

∫

wn x, y,t( )=
w x, y,z,t( )N 2 z( )Wn z( )dz

−H

0

∫
N 2 (z)Wn

2 z( )dz
−H

0

∫

′ρn x, y,t( )=
′ρ x, y,z,t( )Wn z( )dz

−H

0

∫
N 2 (z)Wn

2 z( )dz
−H

0

∫

   

u x, y,z,t( )= un
n=1

∞

∑ x, y,t( )Pn z( )

v x, y,z,t( )= vn
n=1

∞

∑ x, y,t( )Pn z( )

′p x, y,z,t( )= ′pn
n=1

∞

∑ x, y,t( )Pn z( )

w x, y,z,t( )= wn
n=1

∞

∑ x, y,t( )Wn z( )

′ρ x, y,z,t( )= ′ρn
n=1

∞

∑ x, y,t( )N 2 z( )Wn z( )

Ę�£Ȉ9đǟǪƄĘȽɊȨ�ƈǱ ½ȈæǽȄǍ�



ƩƧ�

  

∂u
∂t =− 1ρ∗

∂ ′p
∂x + fv

∂v
∂t =− 1ρ∗

∂ ′p
∂y − fu

∂2η
∂t 2

=− 1ρ∗
∂ ′p
∂z −N

2 z( )η

∂u
∂x + ∂v

∂y+ ∂η
∂z∂t = 0

2.5"ƔƓåaǱiV�

  

u x, y,z,t( )= u x, y,z( )e−iωt

v x, y,z,t( )= v x, y,z( )e−iωt

′p x, y,z,t( )= ′p x, y,z( )e−iωt

η x, y,z,t( )= η x, y,z( )e−iωt

Yì½ωǱ�t£Ȉ�yǡȄ�

  

    ∂u
∂t =− 1

ρ∗
∂ ′p
∂x + fv

    ∂v
∂t =− 1

ρ∗
∂ ′p
∂y − fu

    0 =− 1
ρ∗
∂ ′p
∂z − N 2 z( )−ω2( )η

    ∂u
∂x + ∂v

∂y+ ∂η
∂z∂t = 0ǯlȇǨǥ�mǲǌ"

ƓåaǱgĞÀģ�ǬWǠ"

  N
2⇒ N 2−ω2



Ʃƨ�

d 2W z( )
dz2

+
N 2 z( )−ω 2

gh
W z( ) = 0

ƔƓåaǱiVɕƄĘȽɊȨȈéǽȄÀģ�"

  Wn (z) =Wn z,ω( ),  hn = hn ω( )
ƄĘÙŴƊ½ɉĩ�åóǗYì½ǯ�tǡȄ�

  
ω2 = f 2 + ghn ω( ) k2 + l2( )
4¼Ɗ ��

 �N(z)= N0��������

  

Wn z,ω( )= sin nπH z

hn z,ω( )=
N0
2−ω2( )H 2

gπ2
1
n2

  

ω2 = f 2 +
N0

2−ω2( )H 2

n2π2 k2 + l2( )

→ ω2 =
N0

2 k2 + l2( )+ f 2 n2π2

H 2

k2 + l2 + n2π2

H 2

          f <ω<N0

       k2 + l2  → 0     ω→ f

       k2 + l2  →∞   ω→ N0

4¼Ɗ ��



ƩƩ�
Eckart(1960)Ȉ>��



Ʃƪ�

 N(z)= N0e
z/b W (z) = J ωb

gh

N0be
z/b

gh
⎛

⎝⎜
⎞

⎠⎟
−
J ωb

gh

N0be
−H /b

gh
⎛

⎝⎜
⎞

⎠⎟

Y ωb
gh

N0be
−H /b

gh
⎛

⎝⎜
⎞

⎠⎟

Y ωb
gh

N0be
z/b

gh
⎛

⎝⎜
⎞

⎠⎟

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 1

97
9.

11
:3

39
-3

69
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

by
 U

ni
ve

rs
ity

 o
f T

ok
yo

 o
n 

11
/2

1/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.

  ω= 0.75N0   ω= 0.36N0   ω= 0.03N0

GarreL"and"Munk(1972)�



Ʃƫ�

3.4"/ƀĀçìǱ?Ţ1"ɋoƍÖjēɌ�

  U0e
−iωt

  
U0

H
H S e

−iωt

ȭɅȧɅȱȤȔĀçî� ìƆǗF4ǯƆǒǇîƃǗå�ÀXǯ�Ú�

mí"
åóH�

oƍÖ"
åóHS�



ƩƬ�

  

u=U0e
−iωt +U0 an

n=1

∞

∑ Pn z( )ei(−knx−ωt )

w=             iU0 anhnkn
n=1

∞

∑ Wn z( )ei(−knx−ωt )

  
 kn = ω2− f 2

ghn

 
Pn z( )= hn

dWn
dz

  

uS =U0
H
H S e

−iωt +U0 bn
n=1

∞

∑ PS
n z( )ei(+kSnx−ωt )

wS =                 iU0 bnh
S
nk

S
n

n=1

∞

∑ W S
n z( )ei(+kSnx−ωt )

  
 kSn = ω2− f 2

ghSn

míɋ/ƀì→xǱşǱÀXǯ�¸Ɍ�

oƍÖɋ/ƀì→xǱáǱÀXǯ�¸Ɍ�

ŵķǱ�ȁȃ�



µķÎ�1�

ƪƣ�

 

u(0,z)= uS 0,z( )
0

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

for
for

−H S < z< 0
−H < z<−H S

 ��
�Pm (z)����−H < z< 0�	�

 

cm =
H
H S Pm

−HS

0

∫ dz

Pm
2 dz

−H

0

∫
,   Amn =

PmPn
S dz

−HS

0

∫
Pm

2 dz
−H

0

∫ 
am = cm + Amnbn

n=1

∞

∑

µķÎ�2�

 w(0,z) = wS (0,z)    for   −H S < z< 0

 ��
�N
2 (z)Wm

S (z)����−HS < z< 0�	�

 
bm = Bmnan

n=1

∞

∑
 

Bmn =
−hnkn N 2WnWm

S dz
−HS

0

∫
hm
S km

S N 2 Wm
S( )2 dz

−HS

0

∫



ƪƤ�

 
am = cm + Amnbn

n=1

N

∑ ,     bm = Bmnan
n=1

N

∑

[ȈËƋƗǫǧ5Ȅ�

  
a =
c+ A


b,  

b = Ba⇒   

a = (I−AB)−1 c



ƪƥ�

 

 

t=0/8 T
−4

−2

0

−0.1

0

0.1

 

 

t=1/8 T
−4

−2

0

−0.1

0

0.1

 

 

t=2/8 T
−4

−2

0

−0.1

0

0.1

 

 

t=3/8 T
−4

−2

0

−0.1

0

0.1

 

 

t=4/8 T
−200 −100 0 100
−4

−2

0

−0.1

0

0.1

Fig. 7.5: Internal-tide generation over a steep continental slope: the horizontal baro-
clinic velocity (in m s�1) at five instances during half a tidal period. Parameter values
are: N = 2 � 10�3, f = 1.0 � 10�4 (latitude � = 45⇥N), ⇥ = 1.4 � 10�4 rad s�1;
H = 4000m, Hs = 300m, and Q0 = 100m2 s�1; 25 modes are included.

note that this is rather due to the presence of a sharp corner; for a more realistic,
smoother topography, no such surface reflection occurs (see Section 7.5).

From the development in time in Figure 7.5, we see that in the beam de-
scending into the deep ocean, phase propagation is upward, implying that en-
ergy must propagate downward (see Section 6.1.1); after bottom reflection, this
is reversed.

As noted before (Section 7.1), the present value of Q0 = 100m2 s�1 is rep-
resentative for some locations the Bay of Biscay. Apart from a qualitiative
similarity between the descending beams in Figures 1.9 and 7.5, the horizontal
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note that this is rather due to the presence of a sharp corner; for a more realistic,
smoother topography, no such surface reflection occurs (see Section 7.5).

From the development in time in Figure 7.5, we see that in the beam de-
scending into the deep ocean, phase propagation is upward, implying that en-
ergy must propagate downward (see Section 6.1.1); after bottom reflection, this
is reversed.

As noted before (Section 7.1), the present value of Q0 = 100m2 s�1 is rep-
resentative for some locations the Bay of Biscay. Apart from a qualitiative
similarity between the descending beams in Figures 1.9 and 7.5, the horizontal
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Fig. 5.6: Superpositions with an increasing number of modes, each at t = 0, showing
the horizontal current velocity u. White denotes negative values; black, positive ones.
Parameters as in Figure 5.4.

semi-diurnal lunar frequency M2. It is therefore interesting to compare the
pattern found in Figure 5.5 with that of an observed internal-tide beam, shown
in Figure 1.9. We see that the angles are roughly similar: for every kilometer
the beam traverses in the vertical, it traverses about 10 km in the horizontal. A
noticeable di�erence between the figures is, however, that the beams in Figure
5.5 are straight, while the observed beam is bended; it becomes steeper in the
deep ocean. A clue to this behaviour is found in Figure 1.6, which shows that
stratification N generally decreases with depth in the abyssal ocean.

To take into account this e�ect, we have to abandon the assumption of
constant N . A simple way of doing this is to take two layers of di�erent constants
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Hence
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⌃
, (7.26)

with

An(x) =
⌅ x

�⇥
dy exp(�ikny) ry(y)

Bn(x) =
⌅ ⇥

x
dy exp(ikny) ry(y) .

With this, a closed solution satisfying the radiation conditions has been obtained
for general (small) topography r(x).

|
L

|
−L

r0

x→

z↑

Fig. 7.7: A seamount, defined by (7.27).

As an example, we consider a symmetric seamount, described by a continu-
ously di�erentiable function:

r(x) =

�
⇤

⇥

0 for x < �L
1
2r0[1 + cos(�x/L)] for � L < x < L
0 for x > L ,

(7.27)

with amplitude r0 and width 2L (Figure 7.7). For this r, the functions An(x)
and Bn(x) can be evaluated (Appendix B). One important feature deserves
mention: it turns out that the modes travelling away from the topography are
proportional to

R(knL) =
sin(knL)

�2 � (knL)2
,

which is one of the two factors determining the strength of each mode (the other
one being dn in (7.26)). The dependence of R on the product knL is shown in
Figure 7.8; the response is strong for a certain range of values (2 to 5, say), and
very weak as knL becomes large. Still, even for certain low values the response
may vanish altogether.

7.4.1 Uniform stratification

Here and in later sections, we consider various types of stratification. The
simplest choice is, of course, a constant N , as in Section 5.2.2. We then have
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Fig. 7.9: Internal-tide generation over a small seamount (depicted in Figure 7.7):
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is shown in Figure 7.9, at five di�erent moments during half a tidal cycle. We see
that two beams emanate from the seamount, which is centered around x = 0:
one leftward propagating, the other, rightward. This fact is easily deduced
from the direction of phase propagation and the rules for energy and phase
propagation established in Section 5.2.1, here for N > |f |.

7.4.2 Three-layer model

The assumption of constant N , made in the previous section, provides a rather
inadequate description of the ocean’s stratification; notably, it lacks the ther-
mocline. To capture this important feature, we return to the 3-layer model
discussed in Section 5.4:

N2(z) =

�
⇤

⇥

0 �d < z < 0 (mixed layer)
g�/� �d� � < z < �d (thermocline)
N2

c �H < z < �d� � (abyss) ,
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is shown in Figure 7.9, at five di�erent moments during half a tidal cycle. We see
that two beams emanate from the seamount, which is centered around x = 0:
one leftward propagating, the other, rightward. This fact is easily deduced
from the direction of phase propagation and the rules for energy and phase
propagation established in Section 5.2.1, here for N > |f |.

7.4.2 Three-layer model

The assumption of constant N , made in the previous section, provides a rather
inadequate description of the ocean’s stratification; notably, it lacks the ther-
mocline. To capture this important feature, we return to the 3-layer model
discussed in Section 5.4:
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K 

Fig. 5. Propagation diagram for internal inertial waves, including 
current vector helices. A break in the helix indicates that the velocity 
vector v is passing behind the wave number vector k at that point. The 
z coordinate increases positively away from the ocean surface. Cs is 
the group velocity vector. 

Coriolis frequency f. Two helices are also shown in this figure, 
having axes aligned with the wave number vectors k. The 
helices describe at a given time the path taken by the tip of the 
velocity vector v along the direction of phase propagation. 
(From the assumed incompressibility of the wave, k. v = 0 
always.) 

To an observer looking down from above the origin in 
Figure 5, it is clear that the helices rotate in opposite senses 
depending on whether k is directed toward positive or negative 
z values. Furthermore, the sense in which the velocity vector 
moves around k (that is, the polarization of the helix) is 
uniquely related to the direction of k or of Cs. For clockwise 
polarization of a helix, as one looks down, k is directed up- 
ward and Cs downward. For anticlockwise polarization, 
k points down and Cs up. Therefore according to the spec- 
trum of Figure 4, most of the waves observed have a phase 
propagation direction k which is upward and therefore a net 
energy propagation direction which is downward. If the waves 
had as much energy moving upward as downward, as in a nor- 
mal mode, one would expect linear polarization on-the 
average; that is, A,, = Ca. 

The two-wave composition of Figure 5 can be used to repre- 
sent the hodograph of an internal wave of any frequency 
between N and f. Thus the spectrum of Figure 4 results from 

the superposition of all of the internal wave components. The 
ratio of the clockwise to the anticlockwise spectrum is a func- 
tion of wave frequency and vertical energy flux. The frequency 
decomposition of the profiles, required to estimate vertical 
energy fluxes, has not been done as yet. However, as is 
revealed by Figure 1, the vertical structure of the profiles is 
dominated by waves near the local inertial-diurnal frequencies 
and to a lesser extent by the semidiurnal tide. Therefore we in- 
terpret the dominance of the clockwise energy spectrum to be 
the result of inertial waves having downward energy propaga- 
tion. 

There is other evidence to support the above result. For ex- 
ample, an examination of the time series of 20 drops shows 
that the phase planes of the observed waves do appear to be 
moving upward in time. This would imply that k is indeed 
pointed toward the sea surface for these waves. 

Further analyses of the profile series will seek to describe the 
frequency composition of the observed velocity structure and 
to estimate vertical energy fluxes. 

SUMMARY 

From our examination of this time series of vertical profiles 
we have come to the following conclusions. 

First, as Figure 1 shows, a significant part of the velocity 
variability in these profiles is due to internal waves with 
periods near the local inertial frequency. Such variability is 
always present in the profiles. 

Second, a WKB normalization scheme for taking into ac- 
count variations of wave amplitude and wavelength with 
changing Brunt-Viiisiilii frequency appears to be appropriate. 
This normalization gives profiles which are more uniform in 
amplitude and wavelength than the original profiles. 

Finally, the fact that the group velocity vector appears to be 
directed away from the sea surface indicates that the energy 
source for these near-inertial waves is located at or near the sea 
surface. 
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ω2
w 2

E = KE+PE = ρ
∗

2
N 2− f 2

ω2− f 2
w 2

   

Fx = ′p u=CgxE =
N 2−ω2( )2

ω2− f 2( )
k
ωm2

ρ∗ w 2

2 ,  Fy = ′p v=CgyE =
N 2−ω2( )2

ω2− f 2( )
l
ωm2

ρ∗ w 2

2

Fz = ′p w=CgzE =− (N 2−ω2 )
ωm

ρ∗ w 2

2
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5.4"WKBȜȖɊɂɇȕ�
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/ƀìǱìƆǬ²�ǗlC�

ï=Yì½N(z)lC�

/ƀìǗƄĘÀXǯ�¸"

/ƀìǱ"
ƄĘìƆ�

ï=Yì½N(z)Ǳ"
ƄĘlCȜȖɊɃ"
"""""O(1000m)�

�y�

ɖɖ�

Ǉ/ƀìǯRǨǪ�¬ėǯN(z)=�yǬœǮǣȄǍ(WKBŭ�Ɍ�

ω 2 = N 2 (z)(k2 + l2 )+ f 2m2

k2 + l2 +m2

 �

�����ω
������k,l

ɗ"tƃ�

m(z) = N 2 (z)−ω 2

ω 2 − f 2
(k2 + l2 ) ∝ N 2 (z)−ω 2



ƤƣƤ�

   
Fz =CgzE =− (N

2−ω2 )
ωm

ρ∗ w 2

2

ƄĘȎȫɃȓɊȲɁȤȔȜ�

ɗ"tƃɋȎȫɃȓɊǗű	ǫþǺȂǮǒɌ�

   

w(z) ∝ m(z)
N 2 (z)−ω2

∝ 1
N 2 (z)−ω24    

E = ρ
∗

2
N 2 (z)− f 2

ω2− f 2
w 2 ∝ N 2 (z)− f 2

N 2 (z)−ω2

∂2
∂x2

+ ∂2
∂y2

+ ∂2
∂z2

⎛
⎝⎜

⎞
⎠⎟
∂2w
∂t 2

+ f 2 ∂
2w
∂z2

+ N 2 z( ) ∂2
∂x2

+ ∂2
∂y2

⎛
⎝⎜

⎞
⎠⎟
w = 0

gĞÀģ��

  w=W (z)ei(kx+ly−ωt )

  

d 2W (z)
dz2 +m2 (z)W (z) = 0,    m(z) = N 2 (z)−ω2

ω2− f 2 (k2 + l2 )
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  W (z)= eiφ(z)

  
i d

2φ
dz2
− dφ

dz
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

2

+m2 (z)= 0

  

d2φ
dz2

<< m2 (z)

  

dφ
dz
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟

2

+m2 (z)≈ 0  →   φ± z( )≈± m(s)ds
z

∫

 

dm
dz << m 2⇒ dm

dz
1
m << m

  

dφ±

dz
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

2

≈m2 (z)± i dm(z)dz →
dφ±

dz ≈±m(z)+ i
2m

dm(z)
dz

  
φ±(z)= ± m(s)ds+ i ln m

z

∫

 
W (z)= C1

m(z)
exp(i m(s)ds

z

∫ )+ C2

m(z)
exp(−i m(s)ds

z

∫ )

ŗǱ�" gĞ"
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ɗ
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    m(z)∝ N(z)    

w(z) ∝ 1
N (z)

   

E,KE,PE ∝ N(z)   
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Munk(1966): Abyssal Recipes 
水温と炭素同位体の鉛直分布から鉛直乱流混合係数を推定�

å
ó

(k
m

) 

å÷� ĂĲW��C14 

å
ó

(k
m

) 

,úÂƃ�

Kv,w=一定と仮定 

Ƨ./ƀìǱ?Ţ�

Munk(1966)�



îôV ½(cm2/sec) 
10-5 

å
ó

/100m
 

ó�åȈèǻ�ǛȄǱǯ¡ŒǮ 
îôV ½ɗ10-4m2/s 

îŖøǫøyǞȅȄ 
îôV ½O(10-5)m2/s�

Missing 
Mixing�

10-6 10-4 

19ƫ0���1990��;H�

Gregg(1993)�
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KV =O(10−5 )m2s−1

ɉ23Ǳð�c��ǫǲ 

 

KV =O(10−4 )
    O(10−1)m2s−1

î¯¼ ½ǋǋǋǋǋǋǋǋǋǋǋ KV (x, y, z)
å�ėǯǲƉÞėǯ4�ǌ 
ƄĘėǯǲð�c�ǖȂǱƝǞǱƊ½�

Polzin et al.(1997)�
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ɉ/ƀĀç�0.9TW 
ɉƚŢü/ƀì�1.2TW 
ǋ(oä¹ǌcŌî)�

,č�dKv=10-4m2s-1Ǳ 
îôVǱĸ°�2.1TW 

Munk &Wunsch (1998) Abyssal Recipes II�

ĦƉ�dǟǥ 
îôV ½�KV (x, y, z) =O(10

−4 )m2s−1

  /ƀìǱ�¸→ 
?ŢüǖȂƑȅǥ 
ðfǫǱîôV 
   Kv=10-5m2s-1 

  /ƀìǱ?Ţü 
ŭ&ǫǱîôV 
Kv=10-4 � 
ǋǋ 10-1m2s-1   

0.2TW�1.9TW� 10%�90%�

Munk and Wunsch(1998)�
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TOPEX/PoseidonðƕƝ�ȦɊȡǱWCǯȁȃæǽȂȅǥ 
M2HÁ4ĀǱðƕl�� Matsumoto et al.(2000)�
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RAY AND MITCHUM: SURFACE MANIFESTATION OF INTERNAL TIDES 2103 

and second baroclinic modes. Based on CTD surveys at 
40øN, Dushaw et al. [ 1995] calculated expected wavelengths 
of (156,76) km for M2, (147,72) km for S2. Similar CTD 
data at 23øN, discussed by Chiswell [1994], imply first- 
mode wavelengths of 140 km and 134 km for M2 and S2, 
respectively. It is a curious feature of track 125 that the 
second baroclinic mode appears more pronounced (relative 
to the first mode) in the southern section of the track; the- 
ory predicts that the second mode decays more rapidly with 
distance from the source, but since the topography south of 
Hawaii is complex, these second modes are possibly locally 
produced. 

Confirmation that most of the observed oscillations are in- 

deed progressive waves propagating away from Hawaii can 
be determined from additional phase information in the tidal 
solutions. Figure 4 shows the amplitudes and phase lags of a 
"residual" tide, obtained after removing the barotropic (i.e. 
a complex, low-pass filtered) signal. In such diagram, wave 
propagation northward (or southward) is indicated by phase 
lags increasing (or decreasing) with latitude, while stand- 
ing waves are indicated by nearly constant phase lags with 
180 ø jumps when the amplitudes drop to zero. The general 
trend in Figure 4 clearly suggests propagation away from the 
Hawaiian Ridge. One curious exception is the interval 28øN 
- 30øN where a standing wave pattern is evident. 

Interestingly, the increased amplitudes evident near 20øN 
are not far from Horizon Guyot (19øN, 169øW), where No- 
ble et al. [1988], based on current-meter measurements, con- 
jectured that a large phase-locked internal tide is present. 
They suggested that the tide is generated locally, partly be- 
cause of the presumed unlikelihood of a far-field internal 

40' 

35* - 
10cm 

30 ø 

25 ø 

20 ø 

15 ø 

10 ø 

5 ø 

1•0 ø 1•0 ø 1•0 ø 1•0 ø 
Fig. 5. High-pass filtered M2 amplitudes plotted along 10 as- 

cending Topex/Poseidon tracks. The bold line represents the ap- 
proximate location of the Hawaiian Ridge crest. Track labels, re- 
ferred to in the text, are along bottom of chart. Amplitude scale bar 
in upper left. See also color plate on this issue's cover. 

tide remaining phase-locked for the duration of their mea- 
surements (nine months). Our phase observations (Figure 4) 
show strong continued southward propagation throughout 
this region. Although there is clearly local interference and 
distortion, the waves generated at the Hawaiian ridge are ap- 
parently capable of propagating well beyond 19øN. 

Figure 5 (see also the cover of this issue) shows in map 
form the high-pass filtered M2 amplitudes for all ascending 
Topex tracks across the Hawaiian ridge. The oscillations are 
evident throughout the area. An identical generation mech- 
anism along all tracks is suggested by the following obser- 
vation: Along all eight interior tracks, a trough is consis- 
tently observed over the northern flank of the ridge, except 
for tracks 87 and 23 where the trough shifts to the center of 
the ridge, but for these two tracks the ridge is considerably 
wider; the pattern is missing for track 74, but for this track 
the ridge is broken up and the ocean considerably deeper. 
Perhaps the most striking feature of the map is the long- 
range coherence of the waves: propagation both northwards 
and southwards from the ridge is apparent for well over 1000 
km. This along-track coherence is clear; less clear is the 
cross-track coherence. Yet it is easy to trace, say, the third 
peak north of the ridge across the eight interior tracks and 
to show that the traced wavecrest is at least as straight as 
the ridge itself. Beyond that distance (about 400 km), the 
wavecrest begins to break up in sections, yet in other places 
propagation continues to the very edge of the map. 

A precise (l/e) decay distance is thus not easily deter- 
mined in the face of obvious multiple sources and interfer- 
ence; the drop in amplitude south of the ridge as seen in Fig- 
ure 4 suggests perhaps 300 km (neglecting the likely role of 
secondary sources having caused this drop), while Figure 5 
suggests distances considerably greater than 1000 km. In 
fact, any decay scale inferred from Figure 5 could be consid- 
ered a lower bound on the scale for an individual wavetrain, 
since small variations in propagation speed, while having lit- 
tle effect on the phase lock at short distances, will accumu- 
late over larger distances, generating possible cancellation 
unrelated to real dissipation. 

Exactly how internal tides in the open ocean are dissipated 
is far from clear, but suggested mechanisms include inter- 
nal turbulent friction, vertical shear stress, wave breaking, 
and nonlinear interactions between the internal tides and the 
rest of the internal wave spectrum [Wunsch, 1975]. Theories 
based on internal turbulence [Rattray, 1957; LeBlond, 1966] 
have predicted decay scales of 103-104 km. LeBlond's esti- 
mated Q of order 15, which is comparable to the estimated 
Q of the barotropic semidiurnal tide [Cartwright and Ray, 
1991], is not inconsistent with the decay lengths observed 
here. A similar Q could result, of course, from other dissi- 
pative mechanisms. 

Discussion and Summary 

We may summarize our results by emphasizing the two 
aspects of coherence--time and space--that contradict our 
received notions about the behavior of internal tides. First, 
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Fig. 1. Ragged line: M2 tidal amplitudes estimated every 5.75 
km along Topex/Poseidon track 125, from approximately three 
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Fig. 3. Power spectrum of the data in Figure 2. Solid line is 
for M2, dashed line for S2. The peaks occur close to the expected 
wavelengths of first and second baroclinic modes for these semidi- 

years of collinear differenced data, using the response method of urnal tides. 
analysis [Cartwright and Ray, 1990]. (Harmonic analysis yields 
similar results.) Standard errors for all estimates are approximately 
1 cm. Smooth line: M2 tidal amplitudes from the (updated) 0.5 ø 
global model of Schrama and Ray [1994]; another recent Topex 
model (CSR3.0 of R. J. Eanes) gives nearly identical results. The 
bathymetric profile is extracted from a 5-minute public domain 
database (TerrainBase) of global topography. Track location can 
be seen in Figure 5. 

ian tide gauges by Mitchum and Chiswell, we have con- 
centrated on an area of the Pacific Ocean surrounding the 
Hawaiian Island chain and undersea ridge. An additional 
benefit of this area is that the M2 surface tide propagates 
into the region from the north northeast [e.g., Le Provost et 
al., 1994] and impinges upon the ridge roughly perpendic- 
ularly, while Topex/Poseidon ascending tracks transect the 
ridge also nearly perpendicularly, thus providing simplified 
sampling and analysis of generated waves. What follows is 
primarily a descriptive summary of what is found in the al- 
timetry. 

The results of performing tidal analyses of the data along 
Topex track 125 shows clear oscillations in the estimated 
M2 amplitudes (Figure 1; refer to Figure 5 for the loca- 
tion of this track). For reasons that follow, we interpret 
these oscillations to be the small (several cm) surface ef- 
fects of phase-locked internal tides propagating off various 
topographic features, primarily the Hawaiian ridge. The sea 
surface expression of the internal waves alternately add con- 
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Fig. 2. High-pass filtered output of the tidal amplitudes of Fig- 
ure 1, along with the corresponding filtered amplitudes of S2 (off- 
set). Filter is of Gaussian type with width 450 km. 

structively or destructively to the sea surface expression of 
the barotropic tide, resulting in the oscillatory amplitudes 
shown. The oscillations are obviously "phase-locked" with 
the astronomical potential by definition of our tidal analysis; 
incoherent waves would average out and remain undetected. 

The S2 tide shows similar features, although it is under- 
standably noisier owing to smaller overall amplitudes. Com- 
parison of high-pass filtered M2 and S2 amplitudes (Figure 
2) shows the largest oscillation occurs at the ridge, with a 
trough slightly to the north of the ridge peak and a large crest 
directly to the south. This identical geometrical relationship 
to the ridge is consistent with both constituent waves being 
generated there; the two wavetrains then drift apart owing 
to the natural dispersion of internal tides and to the likely 
interference from multiple sources. 

Spectral analysis of the M2 and S2 wavetrains of track 125 
(Figure 3) reveals two peaks at approximate wavelengths 
()•,)•2) = (150, 85) 4-10 km for M2, (160, 80) 4- 20 km for S2. 
Assuming that wave propagation occurs parallel to the satel- 
lite groundtracks, these values give quite reasonable agree- 
ment with the theoretically expected wavelengths of the first 
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Fig. 4. Amplitudes (cm) and phase lags (degrees) of the "resid- 
ual" tidal signal along track 125, obtained after high-pass filtering 
both in-phase and quadrature components of the original estimated 
tidal solutions. In general, the phase lags imply wave propagation 
away from the Hawaiian Ridge. Amplitudes south of the ridge are 
very complex, but, as noted in text, there are probably multiple 
sources there. 
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Plate 1. Model-predicted distribution of the amplitude of isopycnal vertical displacement at 1000 m depth
associated with the M2 internal tide. Small red stars denote the locations of previous microstructure mea-
surements of diapycnal mixing rates [Gregg, 1998].

Plate 2. Model-predicted distribution of the depth-integrated kinetic energy of the M2 internal tide.
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a numerical modeling study based on a three-dimensional
primitive equation model is most desirable. Although a num-
ber of numerical modeling studies of internal tides have been
carried out, they are restricted to local oceanic regions such as
over continental shelf slopes [Cummins and Oey, 1997; Xing
and Davies, 1998] and mid-oceanic ridges [Merrifield et al.,
2001]. In the present study, as a first step toward numerical
modeling of global internal tides, we clarify the distribution of
the M2 internal tide energy in the whole Pacific Ocean using a
full three-dimensional primitive equation model where realis-
tic bottom topography, density stratification, and barotropic
tidal forcing are taken into account.

2. Numerical Experiment
Figure 1 shows the model domain covering the whole Pacific

Ocean from 115!E to 70!W and from 65!S to 65!N. Since the
computer capacity is limited, it is impossible to carry out a
numerical simulation for the entire model domain using a fine
grid, which is necessary to resolve internal tides. The whole
model domain is therefore divided into 17 subregions, as
shown in Figure 1, for each of which numerical simulation is
carried out separately. In order to reproduce the surface and
internal tide patterns smoothly connected with those in the
surrounding subregions, a buffer region of 5! wide is assumed
all around each subregion.

The governing equations are the full three-dimensional

Navier-Stokes equations under the hydrostatic and Boussinesq
approximations given by
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where t is time; ( x , y , z) are defined positive eastward, north-
ward, and upward, respectively; u , v , and w are the velocity
components in the x , y , and z directions, respectively; u! and v!

Figure 1. Model domain and bathymetry (contour interval is 1000 m). Note that the whole model domain
is divided into 17 subregions for each of which numerical simulation is carried out separately. Prominent
topographic features referred in the text are 1, the Indonesian Archipelago; 2, the Aleutian Archipelago; 3,
the continental shelf slope in the East China Sea; 4, the Hawaiian Ridge; 5, the Izu-Ogasawara Ridge; 6, the
Norfolk Ridge; 7, the Kermadec Ridge; 8, the Macquarie Ridge; 9, the Solomon Archipelago; and 10, the
Tuamotu Archipelago.
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a numerical modeling study based on a three-dimensional
primitive equation model is most desirable. Although a num-
ber of numerical modeling studies of internal tides have been
carried out, they are restricted to local oceanic regions such as
over continental shelf slopes [Cummins and Oey, 1997; Xing
and Davies, 1998] and mid-oceanic ridges [Merrifield et al.,
2001]. In the present study, as a first step toward numerical
modeling of global internal tides, we clarify the distribution of
the M2 internal tide energy in the whole Pacific Ocean using a
full three-dimensional primitive equation model where realis-
tic bottom topography, density stratification, and barotropic
tidal forcing are taken into account.

2. Numerical Experiment
Figure 1 shows the model domain covering the whole Pacific

Ocean from 115!E to 70!W and from 65!S to 65!N. Since the
computer capacity is limited, it is impossible to carry out a
numerical simulation for the entire model domain using a fine
grid, which is necessary to resolve internal tides. The whole
model domain is therefore divided into 17 subregions, as
shown in Figure 1, for each of which numerical simulation is
carried out separately. In order to reproduce the surface and
internal tide patterns smoothly connected with those in the
surrounding subregions, a buffer region of 5! wide is assumed
all around each subregion.

The governing equations are the full three-dimensional

Navier-Stokes equations under the hydrostatic and Boussinesq
approximations given by
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where t is time; ( x , y , z) are defined positive eastward, north-
ward, and upward, respectively; u , v , and w are the velocity
components in the x , y , and z directions, respectively; u! and v!

Figure 1. Model domain and bathymetry (contour interval is 1000 m). Note that the whole model domain
is divided into 17 subregions for each of which numerical simulation is carried out separately. Prominent
topographic features referred in the text are 1, the Indonesian Archipelago; 2, the Aleutian Archipelago; 3,
the continental shelf slope in the East China Sea; 4, the Hawaiian Ridge; 5, the Izu-Ogasawara Ridge; 6, the
Norfolk Ridge; 7, the Kermadec Ridge; 8, the Macquarie Ridge; 9, the Solomon Archipelago; and 10, the
Tuamotu Archipelago.

NIWA AND HIBIYA: INTERNAL TIDES IN THE PACIFIC OCEAN22,444

ĀçȲȏɊȚɇȕǱ�ǔÀ"

Niwa"and"Hibiya(2001)�



ƤƤƩ�

a numerical modeling study based on a three-dimensional
primitive equation model is most desirable. Although a num-
ber of numerical modeling studies of internal tides have been
carried out, they are restricted to local oceanic regions such as
over continental shelf slopes [Cummins and Oey, 1997; Xing
and Davies, 1998] and mid-oceanic ridges [Merrifield et al.,
2001]. In the present study, as a first step toward numerical
modeling of global internal tides, we clarify the distribution of
the M2 internal tide energy in the whole Pacific Ocean using a
full three-dimensional primitive equation model where realis-
tic bottom topography, density stratification, and barotropic
tidal forcing are taken into account.

2. Numerical Experiment
Figure 1 shows the model domain covering the whole Pacific

Ocean from 115!E to 70!W and from 65!S to 65!N. Since the
computer capacity is limited, it is impossible to carry out a
numerical simulation for the entire model domain using a fine
grid, which is necessary to resolve internal tides. The whole
model domain is therefore divided into 17 subregions, as
shown in Figure 1, for each of which numerical simulation is
carried out separately. In order to reproduce the surface and
internal tide patterns smoothly connected with those in the
surrounding subregions, a buffer region of 5! wide is assumed
all around each subregion.
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modeling of global internal tides, we clarify the distribution of
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2. Numerical Experiment
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computer capacity is limited, it is impossible to carry out a
numerical simulation for the entire model domain using a fine
grid, which is necessary to resolve internal tides. The whole
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vertical velocity resulting from the interaction of barotropic
tidal current with bottom topography; and D is the generic
term involving dissipative effect. In (7), p!u! is the energy flux
that is associated with the propagation of internal tide, and
g!!ws represents the conversion rate from surface to internal
tide energy. Integrating (7) over the model domain and taking
the average over one tidal period (denoted by an overbar)
yields

!! p!u! " dS " !!! g!!ws dV # !!! D! dV . (8)

This indicates that the energy converted from surface to inter-
nal tide within the model domain is partially lost by dissipation
before it radiates away through the boundaries of the model
domain.

The model-predicted distribution of the depth-integrated
M2 mode conversion rate " g!!ws dz is presented in Plate 4
where the conversion rate integrated within the area including
each prominent bottom topography (see Figure 1) is also
shown. It should be noted here that !! and ws are obtained
from the baroclinic simulation and barotropic simulation, re-
spectively. It is found that the M2 mode conversion rate over
these prominent topographic features sums up to 285 GW (1

GW # 109 W), which is 84% of that integrated over the whole
model domain (338 GW). Among these topographic features
the M2 internal tide is most efficiently generated in the Indo-
nesian Archipelago where the conversion rate reaches 85 GW.
The East China Sea and the Solomon Archipelago are the
second and third most important generation sites, respectively,
where the conversion rate reaches about 40 GW. Although
Baines [1982] already recognized the continental shelf slope in
the East China Sea as one of the significant generators of the
M2 internal tide in the global ocean, he estimated the conver-
sion rate to be only 1 GW, about one-fortieth that obtained
here. As discussed by Cummins and Oey [1997], this large
discrepancy implies the inapplicability of his vertical two-
dimensional analytical model to tide-topography interactions
in the real ocean.

The M2 mode conversion rate over the prominent mid-
oceanic ridge, namely, the Hawaiian Ridge, the Izu-Ogasawara
Ridge, the Norfolk Ridge, and the Kermadec Ridge, ranges
from 15 to 23 GW (see Plate 4). In particular, the M2 mode
conversion rate over the Hawaiian Ridge amounts to about 15
GW. It is interesting to note that although Merrifield et al.
[2001] recently made quantitative estimate of the M2 tidal
energy dissipation over the Hawaiian Ridge using the three-

Figure 3. High-pass–filtered amplitudes of the M2 tidal surface elevation along the TOPEX/Poseidon (left)
ascending and (right) descending ground tracks over the Hawaiian Ridge obtained from the baroclinic
simulation (thick solid lines) and from the TOPEX/Poseidon altimetric observation (thin solid lines).

Figure 4. As in Figure 3 but for the western North Pacific region near Japan.
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Plate 3. Corange and cophase lines for the M2 tidal constituent in the Pacific Ocean obtained from the
baroclinic simulation. The range is shown by black lines with contour intervals of 0.1 m, whereas the phase is
shown by white lines with contour intervals of 30!.

Plate 4. Model-predicted distribution of the depth-integrated M2 mode conversion rate (for the definition,
see text). The conversion rate integrated within the area including each prominent bottom topography (see
Figure 1) is also shown.
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0.5!C than that at the ocean surface. The damping time r!1 is
assumed to be constant at 4 days.
[17] Figure 4 shows the global distribution of inertial energy

input during three months for each season which is averaged over
7 years from 1989 through 1995. In the northern hemisphere, mixed
layer thickness becomes greater (less) than 50 m during winter and
spring (summer and fall) so that, compared to the case for constant
mixed layer thickness of 50 m, the energy flux to inertial motions
rather decreases (increases). In the southern hemisphere, in contrast,
seasonal variations of mixed layer thickness in the scattered wind
forcing areas occur independently each other. In particular, mixed
layer thickness becomes much less than 50 m during winter in the
dominant wind forcing area in the western South Indian Ocean (30–
60!S and 40–70!E) and during spring in the dominant wind forcing
area in the Antarctic Ocean (60–70!S and 40–90!E), so that large
amount of inertial energy input concentrates in these areas.
[18] Figure 5 shows the time variation of the global inertial

energy flux over the period of 1989–1995. It is interesting to note
that, compared to the case for constant mixed layer thickness of
50 m, inertial energy flux in the southern hemisphere significantly
increases, although inertial energy flux in the northern hemisphere
somewhat decreases. The annual mean global energy flux over this
period reaches about 0.7 TW, a little greater than that for the case
of constant mixed layer thickness of 50 m.

4. Conclusion

[19] Using a simple numerical model, we have clarified that the
annual mean global energy flux to inertial motions in the surface

mixed layer becomes about 0.7 TW which is fairly independent of
the employed damping time of inertial energy. This value is about
half of the previous estimate by Munk and Wunsch [1998]
(1.2 TW) and is comparable to the global estimate of the energy
flux from internal tides (0.9 TW). The annual mean global energy
flux from internal tides and wind stress fluctuations then sums up
to 1.6 TW, obviously falling short of the value required to satisfy
the large-scale advective-diffusive balance of the meridional over-
turning circulation. Furthermore, taking account of the fact that not
all of the energy thus supplied is available for diapycnal mixing
processes in the deep ocean, the present study indicates that
some additional mechanism such as wind-enhanced thermohaline
circulation [Hasumi and Suginohara, 1999; Webb and Suginohara,
2001] is necessary to sustain the large-scale thermohaline circu-
lation.
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restored to the climatological September field at all loca-
tions and depths in the model ocean interior with a time
scale of 30 days (note that the use of the restoring in the
ocean interior is limited to the preexperimental run). The
purpose of the preexperimental stage is to remove the effect
of initial adjustment processes in the model ocean. In fact,
we find that the magnitude of the internal wavefield at the
end of this run is negligible compared to that in the
experimental stage. The final state of the preexperimental
run is employed as the initial condition for the experimental
stage starting from 1 September 1990. During the experi-
mental stage, the model is time advanced for 15 months.
[17] For the analysis in sections 3 and 4, we use the

calculated results during the final 12 months. The model
results, u = (u, v), w, and p, are saved every 1 h, where u is
the baroclinic horizontal velocity vector, w is the baroclinic
vertical velocity obtained from u and v using the equation of
continuity, and p is the baroclinic pressure perturbation
obtained from P by subtracting the depth average. These
variables are then filtered out to retain frequencies, w,
>0.8f0, where f0 is the local inertial frequency. Unless

otherwise stated, internal wave energy and/or near-inertial
energy in sections 3 and 4 are calculated using the high-
pass-filtered components. However, responses near the
equator are outside the scope of the present study because
internal wave motions are indistinguishable from other low-
frequency motions.

3. Results
3.1. Brief Overview of Ocean Response

[18] A sample snapshot of the calculated vertical velocity
perturbations at 1000 m depth and a snapshot of the
calculated meridional velocity perturbations along 177!W
are shown in Figures 2a and 2b, respectively. Superimposed
on Figure 2a are contours of wind stress magnitude with the
interval of 0.2 N m!2. Figures 2a and 2b demonstrate that
the internal waves excited behind traveling midlatitude
storms propagate equatorward and downward while creat-
ing vertical mode structures.
[19] Extended sample time series of the calculated wind

energy input and meridional velocity perturbations at 34!N,

Figure 2. (a) A snapshot of the calculated vertical velocity perturbations at 1000 m depth on 18 January
1991. Superimposed are contours of wind stress magnitude with the interval of 0.2 N m!2. (b) A snapshot
of the calculated meridional velocity perturbations along 177!W on 18 January 1991.
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数値シミュレーションの結果得られた、 
大気擾乱起源の内部波のエネルギー収支 Furuichi"et"al.Ơ2008ơ�

Figure 11. Schematic diagram showing the annual mean energy balance for each of the three areas
outlined by the red boxes in Figure 1. Labels are as follows: a, annual mean wind energy input to each
area; b, annual mean energy dissipation rate within the surface 150 m in each area together with its ratio
to the local wind energy input; c, annual mean energy dissipation rate from 150 m depth to the bottom in
each area together with its ratio to the local wind energy input; d, annual mean energy dissipation rate
from 1000 m depth to the bottom in each area together with its ratio to the local wind energy input; e,
annual mean equatorward energy flux integrated over the equatorward cross section of each area together
with its ratio to the local wind energy input.

Figure 12. (top) Annual mean area-integrated wind energy input to each mode (blue) and annual mean
equatorward energy flux of each mode integrated over the equatorward cross section of each area (purple)
(areas are outlined by the red boxes in Figure 1). The purple and blue values show the ratio of each modal
component to the total wind energy input. (bottom) Annual mean area-averaged horizontal kinetic energy
Em integrated within each depth range (for the definition of Em, see text).
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Figure 2. (top) Topographic roughness in (m). (middle top) Bottom stratification in log10 (s
−1)) estimated using the WOCE

hydrographic atlas. (middle) Bottom kinetic energy in log10 (m
2 s−2) obtained from the isopycnal ocean model. (middle

bottom) Topographic steepness parameter, log10 !. (bottom) Energy flux into internal lee waves in log10 (mW m−2).
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has lower amplitude with little change in spectral slope at
high frequency (Figure 5). We anticipate results presented
below by stating here that annual average spectral levels at
Site D tend to be larger than those at other places, and thus,
being a fit to wintertime conditions, the Garrett and Munk
model is a poor description of the background internal
wavefield in much of the world ocean.
[54] Despite the vertical spectrum being defined using

data obtained elsewhere, recent vertical profile data data
from Site D are remarkably consistent with the GM76 model
(1/(m*

2 + m2)) (Figure 6). Wintertime conditions exhibit both
enhanced spectral levels (amplitude factors of 2.75 versus
1.75) and relatively more variance at low modes ( j* = 4–5
versus j* = 10) than summertime data. Wintertime conditions
also exhibit larger ratios of kinetic to potential energy at high
wavenumber, implying an increased input of near‐inertial
energy during wintertime and relaxation to higher frequencies.
3.3.2. The Sargasso Sea
[55] A large number of experiments have been located in

the Sargasso Sea over the Hatteras Abyssal Plain. On the
southern side of the Gulf Stream, this region exhibits an
energetic eddy field having significant north‐south gra-
dients. Eddy energy levels are typically less than noted at
Site D. A tidal (M2) peak is apparent in the temperature and
velocity spectra. Müller et al. [1978] find that fluctuations at

this frequency have larger characteristic vertical scales than
the internal wave continuum, and there is evidence of sim-
ilar features at the first several harmonics. From current
meter data at 28°N, 70°W, Noble [1975] and Hendry [1977]
estimate net fluxes at M2 to be to the southeast and infer the
source to be the Blake Escarpment, near the western bound-
ary. Alford and Zhao [2007], on the other hand, document net
semidiurnal fluxes to the north‐northwest (at 31°N, 69° 30′W)
and southwest (at 34°N, 70°W).
[56] The bottom near midbasin is well sedimented and

smooth at 28°N, 70°W, the locus of the Mid‐Ocean
Dynamics Experiment and the Internal Wave Experiment.
Rougher topography is noted to the east. (One also finds
mud waves. Mud waves are sedimentary features of 1–10 km
horizontal wavelength having amplitudes of tens to hundreds
of meters. These horizontal scales are appropriate for the
generation of freely propagating internal lee waves (with
Eulerian frequency s = 0) if the intrinsic frequency w = s −
p · u lies between the Coriolis and buoyancy frequencies:
f ≤ p · u ≤ N. Significant coupling between the “mean”
and internal wavefield is anticipated at mean flow rates of
0.1–0.2 m s−1. Sediment transport is an issue at such flow
rates and the possibility exists that the lee wave velocity
perturbations affect the deposition and erosion process so as
to reinforce the mud waves [Blumsack, 1993]. But this gets

Figure 2. Site D frequency spectra of horizontal kinetic energy (blue lines). These are the Site D data
that appeared in the original GM72 paper. Black curves represent fits of (21) with r = 2. The thick vertical
lines represent the buoyancy frequency cutoff. The spectra have been offset by 1 decade for clarity.
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Figure 3 together with the region of strong inertial currents
with the amplitude exceeding 0.7 m s!1. We can see that,
corresponding to the traveling midlatitude storm, the wind
stress curl field shifts eastward at the speed of about 20 m s!1;
after the passage of the midlatitude storm, strong inertial cur-
rents are seen to be excited in the area of 160"–170"E and
35"–40"N.

To examine spatial distribution of atmospheric disturbances
which excite the mixed layer inertial currents, annual mean
field of the inertial current amplitude in the mixed layer is
shown in Figure 4. Superimposed are the contours of the
horizontal distance from the center of the four mooring loca-
tions, namely, 165"E and 30"N. The large-amplitude inertial
currents are found to occur in the midlatitude band (30"–50"N)
corresponding to the passages of midlatitude storms such as
shown in Figure 3. It is interesting to note that the largest
inertial currents are found 500–1000 km to the north of the
mooring sites. If the generation mechanism of the double-
inertial frequency waves proposed by Niwa and Hibiya [1997] is
actually working in the real ocean, southward propagating dou-
ble-inertial frequency waves are expected to be detected at
these mooring sites.

4. Deep Ocean Internal Wave Field

4.1. Analysis of A1 Data
We first analyze the current meter data at A1, which is

closest to the region where the predominant inertial currents
are excited by midlatitude storms (see Figure 4). Figure 5
shows the frequency spectrum of horizontal kinetic energy
obtained by taking an average of all the frequency spectra for
the divided data pieces. This average frequency spectrum
shows familiar features of the deep ocean internal wave spec-
trum with the prominent peaks at the inertial frequency and
semidiurnal tidal frequency and the spectral decay at high
frequencies. It is interesting to note that except for the inertial
and semidiurnal tidal peaks, the shape and level of the average
spectrum are well approximated by those of the canonical
Garrett and Munk internal wave spectrum [Munk, 1981].

Next, to examine the temporal variation of the internal wave
field, multiple filter analysis is carried out using the band-pass
filter (1) with !n # n $ 0.0025 cph and " # 1840. Figure 6
shows time variations of the horizontal current amplitude for

Figure 5. Frequency spectrum of horizontal kinetic energy at
A1 obtained by averaging of all the frequency spectra for
divided data pieces. For comparison, the canonical Garrett and
Munk internal wave spectrum is shown by thin solid line. Note
that each spectrum is normalized by the annual mean buoyancy
frequency. The local inertial ( f ) and double-inertial (2f ) fre-
quencies and the semidiurnal tidal frequency (M2) are
marked. Shading denotes the 90% confidence range of the
spectral estimate.

Figure 6. Time variations in amplitude of horizontal current velocity at A1 for different frequencies ob-
tained by employing the multiple filter analysis [Dziewonski et al., 1969]. The amplitudes of horizontal current
velocity in centimeters per second are contoured with intervals of 0.1 in the logarithm. Shading indicates
missing data. Horizontal dotted lines indicate the local inertial ( f ) and double-inertial (2f ) frequencies and
the semidiurnal tidal frequency (M2).
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Fig. 11. The Garrett and Munk model for the energy spectrum of internal waves. The upper display is E(•,/•) in wave 
number space, the middle and bottom displays are E(•, to) and E(/•, to), respectively. Coordinates are dimensionless and 
plotted logarithmically, so that plane surfaces represent power laws, as designated. The moored spectrum MS is a projection 
on a vertical plane, as shown in the top right figure, and the towed spectrum TS and dropped spectrum DS are displayed 
similarly. Coherences (MHC, TLC, .-.) are related to various bandwidths, as indicated [Garrett and Munk, 1975]. (In these 
figures, • is denoted by K and/• by rn.) 
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Fig. 1. Segments of the 6.90øC and 6.45øC isotherm records from Misery 1. 

and 

½•: = arctan (C•:)/(Q•:) (2) 
where the angle brackets designate averages over the desired 
frequency range. We use instead 

Rx:: = (Rt cos 4h): + (Rt sin ½t): (3) 
and 

•,•-= <•,> (4) 
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Fig. 2. Temperature and buoyancy frequency profiles in the area 
from California Cooperative Fisheries Investigation data. These 
are averages of data taken in the month of June for several dif- 
ferent years. 

where i is spectral band number and Rt and ½t are coherence 
and phase estimates within each narrow frequency interval 
(bandwidth 0.044 Cph). In (1) and (2), coherence and phase 
estimates at a particular frequency enter into the average with 
a weighting proportional to the energy at that frequency. In 
the present case this would heavily weight the energetic lowest 
frequencieg. This is largely avoided by USing (3) and (4), which 
tend to weight contributions to the average equally regardless 
of the energy distribution. 

There are two interesting results evident in the low-fre- 
quency averages. First, the average phase differences remain 
essentially zero, implying that over this low-frequency range 
there is little net vertical transport of internal wave .energy 
(Figure 4). Second, the coherence decreases linearly with verti- 
cal separation and approaches unity as t. he separation goes to 
zero (Figure 4). The implications of this second result are 
explored in the following sections. 

MISERY AND THE GARRETT-MUNK MODEL 

This section of the paper was suggested by Christopher 
Garrett and Walter Munk and was written in collaboration 
with them. 

The Power Spectrum 
Garrett and Munk [1972, 1975] have proposed an internal 

wave model in which the displacement cospectrum away from 
ocean boundaries and turning frequencies is (for more detail 
see the appendix, Garrett and Munk [1972, 1975], and Cairns 
[1975]) ' 

C12(0.), j, Z) = «b:E(no/n)G(w)HO ') cos (j no _•) (5) n 
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G(w) dw • 1 •'] H(j) = 1 (6) 
½ 

where 

•)•/• 4 •(• -- • 4 • G(•) = - • • • • • • (7) 

and in the GM75 model 
•(j) = t- • j, = • t = 5/2 (S) (• • j/j,)' 

The G M75 model defines a stratification scale depth b (1.3 km) 
for an exponential model n = hoe -•, where •0 (3 cph) is the 
buoyancy frequency at the top of the thermocline. The 'local' 
vertical •avenumber is jz(no/n)b -•, and E(6.3 • l0 -•) is a 
dimensionless energy. 

The normalization'is such that for vertical separation Z, 

i i•1 

where for the particular case Z = 0, Cx•(•, j, 0) • Cxx • 
Sx(•, j), giving 

• • d• • S(•, j)• •b•E(no/n)• (10) 

•e displacement power spectrum is 

s(•) • • s(•. j) = }b:•(.o/.)a(•) (• •) 
For convenience in the present case we choose somewhat 
different values of b (1000 m) and d0 (6 cph), where d0 is the 
buoyancy frequency extrapolated to the sea surface. These 
seem more suitable for the depth of the Misery experiment. To 
maintain the energy density given in the GM72 model, we set 
E 5.3 X 10 -•. The spectrum from (11 ) in the range &• < & < = 
0.Sd (shown as a segment of the light line in Figure 3 (top)) is 
in good agreement in both slope and level with the observed 
spectrum. 

In the GM72 model [Garrett and Munk, 1972, equation 6.7], 

•(•) = -•, •,+• (•2) 

where s is a parameter which governs the shape of the spec- 
trum near •. The domain ors must be 0 • s • 1 to give the 
observed integrable cusp [e.g., Fofono• 1969] in the horizon- 
tal velocity spectrum at the inertial frequency. The displace- 
ment spectrum near • (Figure 5) is not very sensitive to s, and 
s = } as chosen arbitrarily in the GM72 model seems reason- 
able. A more definitive statement on s requires higher spectral 
resolution at the inertial frequency. 

•ertical Coherence 

The GM75 vertical coherence, written here for discrete 
modes, is 

•.•(•. z) = c1•(•. z)/[Cl.(•)c•(•)] '• 

= • H(j) cos [j•(n/no)(Z/b)] (13) 
i=1 

Notice R•z(•, Z) • R::(Z), independent of frequency for • << 
n. If we assume that the loss of coherence with vertical separa- 
tion is due to modal bandwidth, the observed linear decrease 
of coherence with separation suggests that modal energy is 

I I 
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Fig. 3. (Top) Displacement spectrum oœthc 6.60ø(2 isotherm œrorn 

Misery I and 3. For w > 0.1 cph the spectral estimates have 74 d.f. For 
w < 0.1 cph they have 18 d.f. The smooth line is the spectrum from 
Garrett and Munk [1972] in the range wt < w < 0.$n and from a•slightly 
revised model (equation (16)) for w > 0.$n. (Middle) Coherence (not 
squared) over the 36-m separation between the 6.90øC and 6.45øC 
isotherms from Misery 1. If the signals were truly incoherent, the 
estimated coherence would fall below the dashed line 95% of the time. 
The smooth line is a model computation. These estimates have 22 d.f. 
(Bottom) Phase difference between the same isotherms. At a coherence 
of 0.85, if the signals were truly in phase, the estimated phase would 
fall within the bounds shown 95% of the time. 

distributed by some H{j) which behaves like j-" for largej. We 
adopt the modal weighting (somewhat different from the 
GM75 model) 

H(j) = (J" + J*")-: (14) 
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has lower amplitude with little change in spectral slope at
high frequency (Figure 5). We anticipate results presented
below by stating here that annual average spectral levels at
Site D tend to be larger than those at other places, and thus,
being a fit to wintertime conditions, the Garrett and Munk
model is a poor description of the background internal
wavefield in much of the world ocean.
[54] Despite the vertical spectrum being defined using

data obtained elsewhere, recent vertical profile data data
from Site D are remarkably consistent with the GM76 model
(1/(m*

2 + m2)) (Figure 6). Wintertime conditions exhibit both
enhanced spectral levels (amplitude factors of 2.75 versus
1.75) and relatively more variance at low modes ( j* = 4–5
versus j* = 10) than summertime data. Wintertime conditions
also exhibit larger ratios of kinetic to potential energy at high
wavenumber, implying an increased input of near‐inertial
energy during wintertime and relaxation to higher frequencies.
3.3.2. The Sargasso Sea
[55] A large number of experiments have been located in

the Sargasso Sea over the Hatteras Abyssal Plain. On the
southern side of the Gulf Stream, this region exhibits an
energetic eddy field having significant north‐south gra-
dients. Eddy energy levels are typically less than noted at
Site D. A tidal (M2) peak is apparent in the temperature and
velocity spectra. Müller et al. [1978] find that fluctuations at

this frequency have larger characteristic vertical scales than
the internal wave continuum, and there is evidence of sim-
ilar features at the first several harmonics. From current
meter data at 28°N, 70°W, Noble [1975] and Hendry [1977]
estimate net fluxes at M2 to be to the southeast and infer the
source to be the Blake Escarpment, near the western bound-
ary. Alford and Zhao [2007], on the other hand, document net
semidiurnal fluxes to the north‐northwest (at 31°N, 69° 30′W)
and southwest (at 34°N, 70°W).
[56] The bottom near midbasin is well sedimented and

smooth at 28°N, 70°W, the locus of the Mid‐Ocean
Dynamics Experiment and the Internal Wave Experiment.
Rougher topography is noted to the east. (One also finds
mud waves. Mud waves are sedimentary features of 1–10 km
horizontal wavelength having amplitudes of tens to hundreds
of meters. These horizontal scales are appropriate for the
generation of freely propagating internal lee waves (with
Eulerian frequency s = 0) if the intrinsic frequency w = s −
p · u lies between the Coriolis and buoyancy frequencies:
f ≤ p · u ≤ N. Significant coupling between the “mean”
and internal wavefield is anticipated at mean flow rates of
0.1–0.2 m s−1. Sediment transport is an issue at such flow
rates and the possibility exists that the lee wave velocity
perturbations affect the deposition and erosion process so as
to reinforce the mud waves [Blumsack, 1993]. But this gets

Figure 2. Site D frequency spectra of horizontal kinetic energy (blue lines). These are the Site D data
that appeared in the original GM72 paper. Black curves represent fits of (21) with r = 2. The thick vertical
lines represent the buoyancy frequency cutoff. The spectra have been offset by 1 decade for clarity.
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CAIRNS AND WILLIAMS' INTERNAL WAVE OBSERVATIONS 1945 

G(w) dw • 1 •'] H(j) = 1 (6) 
½ 

where 

•)•/• 4 •(• -- • 4 • G(•) = - • • • • • • (7) 

and in the GM75 model 
•(j) = t- • j, = • t = 5/2 (S) (• • j/j,)' 

The G M75 model defines a stratification scale depth b (1.3 km) 
for an exponential model n = hoe -•, where •0 (3 cph) is the 
buoyancy frequency at the top of the thermocline. The 'local' 
vertical •avenumber is jz(no/n)b -•, and E(6.3 • l0 -•) is a 
dimensionless energy. 

The normalization'is such that for vertical separation Z, 

i i•1 

where for the particular case Z = 0, Cx•(•, j, 0) • Cxx • 
Sx(•, j), giving 

• • d• • S(•, j)• •b•E(no/n)• (10) 

•e displacement power spectrum is 

s(•) • • s(•. j) = }b:•(.o/.)a(•) (• •) 
For convenience in the present case we choose somewhat 
different values of b (1000 m) and d0 (6 cph), where d0 is the 
buoyancy frequency extrapolated to the sea surface. These 
seem more suitable for the depth of the Misery experiment. To 
maintain the energy density given in the GM72 model, we set 
E 5.3 X 10 -•. The spectrum from (11 ) in the range &• < & < = 
0.Sd (shown as a segment of the light line in Figure 3 (top)) is 
in good agreement in both slope and level with the observed 
spectrum. 

In the GM72 model [Garrett and Munk, 1972, equation 6.7], 

•(•) = -•, •,+• (•2) 

where s is a parameter which governs the shape of the spec- 
trum near •. The domain ors must be 0 • s • 1 to give the 
observed integrable cusp [e.g., Fofono• 1969] in the horizon- 
tal velocity spectrum at the inertial frequency. The displace- 
ment spectrum near • (Figure 5) is not very sensitive to s, and 
s = } as chosen arbitrarily in the GM72 model seems reason- 
able. A more definitive statement on s requires higher spectral 
resolution at the inertial frequency. 

•ertical Coherence 

The GM75 vertical coherence, written here for discrete 
modes, is 

•.•(•. z) = c1•(•. z)/[Cl.(•)c•(•)] '• 

= • H(j) cos [j•(n/no)(Z/b)] (13) 
i=1 

Notice R•z(•, Z) • R::(Z), independent of frequency for • << 
n. If we assume that the loss of coherence with vertical separa- 
tion is due to modal bandwidth, the observed linear decrease 
of coherence with separation suggests that modal energy is 

I I 

.... 95% . 

-- - - 95% - 

•.- - -95% - - 

-45•01 I I I I o.1 1.o lO 

FREQUENCY (cph) 
Fig. 3. (Top) Displacement spectrum oœthc 6.60ø(2 isotherm œrorn 

Misery I and 3. For w > 0.1 cph the spectral estimates have 74 d.f. For 
w < 0.1 cph they have 18 d.f. The smooth line is the spectrum from 
Garrett and Munk [1972] in the range wt < w < 0.$n and from a•slightly 
revised model (equation (16)) for w > 0.$n. (Middle) Coherence (not 
squared) over the 36-m separation between the 6.90øC and 6.45øC 
isotherms from Misery 1. If the signals were truly incoherent, the 
estimated coherence would fall below the dashed line 95% of the time. 
The smooth line is a model computation. These estimates have 22 d.f. 
(Bottom) Phase difference between the same isotherms. At a coherence 
of 0.85, if the signals were truly in phase, the estimated phase would 
fall within the bounds shown 95% of the time. 

distributed by some H{j) which behaves like j-" for largej. We 
adopt the modal weighting (somewhat different from the 
GM75 model) 

H(j) = (J" + J*")-: (14) 
Eu'+ ], ) 
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__ K.•+f•m•/N 

Fig. 11. The Garrett and Munk model for the energy spectrum of internal waves. The upper display is E(•,/•) in wave 
number space, the middle and bottom displays are E(•, to) and E(/•, to), respectively. Coordinates are dimensionless and 
plotted logarithmically, so that plane surfaces represent power laws, as designated. The moored spectrum MS is a projection 
on a vertical plane, as shown in the top right figure, and the towed spectrum TS and dropped spectrum DS are displayed 
similarly. Coherences (MHC, TLC, .-.) are related to various bandwidths, as indicated [Garrett and Munk, 1975]. (In these 
figures, • is denoted by K and/• by rn.) 
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has lower amplitude with little change in spectral slope at
high frequency (Figure 5). We anticipate results presented
below by stating here that annual average spectral levels at
Site D tend to be larger than those at other places, and thus,
being a fit to wintertime conditions, the Garrett and Munk
model is a poor description of the background internal
wavefield in much of the world ocean.
[54] Despite the vertical spectrum being defined using

data obtained elsewhere, recent vertical profile data data
from Site D are remarkably consistent with the GM76 model
(1/(m*

2 + m2)) (Figure 6). Wintertime conditions exhibit both
enhanced spectral levels (amplitude factors of 2.75 versus
1.75) and relatively more variance at low modes ( j* = 4–5
versus j* = 10) than summertime data. Wintertime conditions
also exhibit larger ratios of kinetic to potential energy at high
wavenumber, implying an increased input of near‐inertial
energy during wintertime and relaxation to higher frequencies.
3.3.2. The Sargasso Sea
[55] A large number of experiments have been located in

the Sargasso Sea over the Hatteras Abyssal Plain. On the
southern side of the Gulf Stream, this region exhibits an
energetic eddy field having significant north‐south gra-
dients. Eddy energy levels are typically less than noted at
Site D. A tidal (M2) peak is apparent in the temperature and
velocity spectra. Müller et al. [1978] find that fluctuations at

this frequency have larger characteristic vertical scales than
the internal wave continuum, and there is evidence of sim-
ilar features at the first several harmonics. From current
meter data at 28°N, 70°W, Noble [1975] and Hendry [1977]
estimate net fluxes at M2 to be to the southeast and infer the
source to be the Blake Escarpment, near the western bound-
ary. Alford and Zhao [2007], on the other hand, document net
semidiurnal fluxes to the north‐northwest (at 31°N, 69° 30′W)
and southwest (at 34°N, 70°W).
[56] The bottom near midbasin is well sedimented and

smooth at 28°N, 70°W, the locus of the Mid‐Ocean
Dynamics Experiment and the Internal Wave Experiment.
Rougher topography is noted to the east. (One also finds
mud waves. Mud waves are sedimentary features of 1–10 km
horizontal wavelength having amplitudes of tens to hundreds
of meters. These horizontal scales are appropriate for the
generation of freely propagating internal lee waves (with
Eulerian frequency s = 0) if the intrinsic frequency w = s −
p · u lies between the Coriolis and buoyancy frequencies:
f ≤ p · u ≤ N. Significant coupling between the “mean”
and internal wavefield is anticipated at mean flow rates of
0.1–0.2 m s−1. Sediment transport is an issue at such flow
rates and the possibility exists that the lee wave velocity
perturbations affect the deposition and erosion process so as
to reinforce the mud waves [Blumsack, 1993]. But this gets

Figure 2. Site D frequency spectra of horizontal kinetic energy (blue lines). These are the Site D data
that appeared in the original GM72 paper. Black curves represent fits of (21) with r = 2. The thick vertical
lines represent the buoyancy frequency cutoff. The spectra have been offset by 1 decade for clarity.
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Figure 3 together with the region of strong inertial currents
with the amplitude exceeding 0.7 m s!1. We can see that,
corresponding to the traveling midlatitude storm, the wind
stress curl field shifts eastward at the speed of about 20 m s!1;
after the passage of the midlatitude storm, strong inertial cur-
rents are seen to be excited in the area of 160"–170"E and
35"–40"N.

To examine spatial distribution of atmospheric disturbances
which excite the mixed layer inertial currents, annual mean
field of the inertial current amplitude in the mixed layer is
shown in Figure 4. Superimposed are the contours of the
horizontal distance from the center of the four mooring loca-
tions, namely, 165"E and 30"N. The large-amplitude inertial
currents are found to occur in the midlatitude band (30"–50"N)
corresponding to the passages of midlatitude storms such as
shown in Figure 3. It is interesting to note that the largest
inertial currents are found 500–1000 km to the north of the
mooring sites. If the generation mechanism of the double-
inertial frequency waves proposed by Niwa and Hibiya [1997] is
actually working in the real ocean, southward propagating dou-
ble-inertial frequency waves are expected to be detected at
these mooring sites.

4. Deep Ocean Internal Wave Field

4.1. Analysis of A1 Data
We first analyze the current meter data at A1, which is

closest to the region where the predominant inertial currents
are excited by midlatitude storms (see Figure 4). Figure 5
shows the frequency spectrum of horizontal kinetic energy
obtained by taking an average of all the frequency spectra for
the divided data pieces. This average frequency spectrum
shows familiar features of the deep ocean internal wave spec-
trum with the prominent peaks at the inertial frequency and
semidiurnal tidal frequency and the spectral decay at high
frequencies. It is interesting to note that except for the inertial
and semidiurnal tidal peaks, the shape and level of the average
spectrum are well approximated by those of the canonical
Garrett and Munk internal wave spectrum [Munk, 1981].

Next, to examine the temporal variation of the internal wave
field, multiple filter analysis is carried out using the band-pass
filter (1) with !n # n $ 0.0025 cph and " # 1840. Figure 6
shows time variations of the horizontal current amplitude for

Figure 5. Frequency spectrum of horizontal kinetic energy at
A1 obtained by averaging of all the frequency spectra for
divided data pieces. For comparison, the canonical Garrett and
Munk internal wave spectrum is shown by thin solid line. Note
that each spectrum is normalized by the annual mean buoyancy
frequency. The local inertial ( f ) and double-inertial (2f ) fre-
quencies and the semidiurnal tidal frequency (M2) are
marked. Shading denotes the 90% confidence range of the
spectral estimate.

Figure 6. Time variations in amplitude of horizontal current velocity at A1 for different frequencies ob-
tained by employing the multiple filter analysis [Dziewonski et al., 1969]. The amplitudes of horizontal current
velocity in centimeters per second are contoured with intervals of 0.1 in the logarithm. Shading indicates
missing data. Horizontal dotted lines indicate the local inertial ( f ) and double-inertial (2f ) frequencies and
the semidiurnal tidal frequency (M2).

10,985NIWA AND HIBIYA: RESPONSE OF INTERNAL WAVE FIELD TO MIDLATITUDE STORMSőƀp�íǫŖøǞȅǥ"
å�îųǱYì½ȜȶȔȧɃ"

GMȜȶȔȧɃ�

ƤƪƬ�

Polzin"and"Lvov(2011)�

Niwa"and"Hibiya(1999)�



GMスペクトルの普遍性の維持プロセス？ 
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内部波の励起源は空間的に局在している 

GMスペクトルの普遍性＝外洋の内部波スペクトルのレベルや 
形状は場所や時間によらずほぼ一定に保たれている。 

GMスペクトルの維持プロセスは完全には解明されていない。 

にもかかわらず 
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内部波の長距離伝播 

内部潮汐波は大洋中を10000km以上伝播できる。 
⇒GMスペクトルの普遍的エネルギーレベルを維持？ 
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Ǌ The Buoy Data Archive of Oregon State University!
ɉSea floor depth ≥ 1000m!
ɉCurrent meter depth: Zcm > 100m, Zcm < sea floor depth-100.!
ɉSampling interval ≤ 180min.!
ɉRecord length ≥ 60 days!
ɉNumber of current meters ≥ 2!
ɉMin(Zcm) < Zero-crossing of the 1st mode wave < Max(Zcm) !

Current Meter Data of Mooring Obs.!

Data Analysis!
1. Band Pass Filterring Ǉ Semidiurnal Period Components!
2. Vertical Mode Analysis Ǉ Barotropic Mode+First Vertical Mode!
Ǉ 1st-Vertical-Mode Semidiurnal Internal Tide Energy !
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Adequate Damping Time of Internal Tidesɕ30days~60days ×Cg~3m/s 
=> Internal Tides can propagate nearly 10000 km  across the open ocean. 

Damping Time=5days Damping Time=15days 

Damping Time=30days Damping Time=60days 

Model Calculation-KE(J/m2) 

ɋJ/m2) 

O
bservation-K

E
�

Comparison between Mooring Obs. and Model Results�

Propagation 
Velocity�


ľɉÁãŞ(2009)�



乱流混合�
O(1m)〜O(1cm) �

小規模スケール内部波!
O(10m)〜O(1m)!

不安定・砕波�

大規模スケール内部波!
O(100km)〜O(1km)!

エネルギー!
カスケード�

潮汐�大気擾乱�

/ƀìǱ"
ƔĹ�ę��đ"

ƤƫƧ�

ɓƟðí/ƀìǱƔĹ�ę��đ�

GarreL"(2003)�



Ƥƫƨ�

/ƀì"
ƔĹ�ę��đ�

Yì½ɉì½ȜȶȔȧɃĦƉ"
ȎȫɃȓɊȑȜȖɊȨ�

Yì½ȜȶȔȧɃ�
ƄĘì½ȜȶȔȧɃ�

Niwa"and"
Hibiya(1999)�

Polzin"and"
Lvov(2011)�



ƤƫƩ�

Tb = 30 mins), the typical value observed in the main
thermocline.
[5] The numerical experiment starts from the initial state

at rest. The model is subsequently forced at the near-inertial
frequency as well as the semidiurnal tidal frequency both at
the lowest vertical wavenumber in the form,

Fu ¼ a1u1 þ a2u2

Fv ¼ a1v1 þ a2v2

Fw ¼ a1w1 þ a2w2

Fr0 ¼ b1r
0
1 þ b2r

0
2

where u1, v1, w1, and r10 (u2, v2, w2, and r20) are the velocity
components and density perturbation at the near-inertial
frequency (the semidiurnal tidal frequency) and the lowest
vertical wavenumber, ai and bi (i = 1,2) are the forcing
coefficients. Then, the kinetic and potential energy input
from the near-inertial forcing (KEI1; PEI1) and those from
the semidiurnal tidal forcing (KEI2; PEI2) are given by

KEIi ¼ !i"0 u2i þ v2i þ w2
i

! "

i ¼ 1; 2ð Þ

PEIi ¼ #i
g2"02i
"0N2

i ¼ 1; 2ð Þ
ð3Þ

with the overbar denoting an average over the model domain.
[6] In order to attain a steady internalwave field,we inject the

same amount of energy as dissipated in the model ocean so that

KEI1 þ PEI1 ¼ gr0e

KEI2 þ PEI2 ¼ 1% gð Þr0e

where g is the ratio of the near-inertial forcing energy to the
total forcing energy, and e is the energy dissipation in the

model ocean. For the assumed value of N, e is determined
using the relationship [Osborn, 1980]

e ¼ krN
2

0:2
ð5Þ

where the eddy diffusivity coefficient kr = 1.0& 10%5 m2s%1

is employed following the results of microstructure measure-
ments in the main thermocline away from the topography
[Munk andWunsch, 1998]. The forcing coefficientsai, bi (i =
1,2) are determined using equations (4) and (5) with the
assumption,

Figure 1. Time development of the two-dimensional internal wave energy spectrum at 30!N for the case of equal
weighting of the near-inertial and semidiurnal tidal forcing at the lowest vertical wavenumber. The superimposed dashed
lines denote the iso-frequency lines corresponding to 1.01, 1.1, 2, and 4 times the inertial frequency ( f ).

Figure 2. (left) The GM spectrum based on GM79 [Munk,
1981], and (right) the numerically reproduced quasi-
stationary spectrum at 30!N for the case of equal weighting
of the near-inertial and semidiurnal tidal forcing at the
lowest vertical wavenumber. The dashed lines denote the
iso-frequency lines corresponding to 1.01, 1.1, 2, and 4
times the inertial frequency (f).

(2)

(4)
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Fig. 5. Physical processes affecting internal waves. 

tant. If, for example, we are considering a part ot' the ocean 
that includes the seasonal thermocline, we should consider the 
local input from the atmosphere in the source terms (as well as 
resonant interactions and the dissipation processes, although 
the latter may be more important at high frequencies) but not 
an input from bottom topography. in the interior of the ocean 
the local generation terms may possibly be insignificant, and 
the source-sink term S dominated by resonant interactions and 
dissipation. A difficult but important problem is that o1' l'or- 
mulating the various source-sink contributions in terms o1' 
parameters of the physical processes that can be observed by 
experiments in the ocean and recognizing the limitations of ex- 
isting (or possible) measuring instruments. Experiments are 
needed (some are already planned or being made) that can 
measure the relative importance of the source-sink con- 
tributions in different parts of the ocean and identify the 
various physical processes that influence them most. 

We have briefly described the known physical processes by 
which internal waves are generated and by which they 
propagate and decay. There may be others yet unknown. It is 
not beyond our wit to decide on their relative importance, 
although their complexity is such that probably most rapid 
progress can be made by the inverse process of intbrence l'rom 
the results of experiments and observations of the waves 
themselves instead of through the direct approach, which has 
been followed here, of considering the various mechanisms 
separately and of trying to establish their relative importance 
from a calculation of the external forces acting on a part ot'the 

deep ocean. Many exciting and significant discoveries in this 
important but formidable field of research are yet to be made. 

/icknowledgment. The talk at the AGU meeting on April 9, 1974, 
was a summary based on this paper. 
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Of special importance is that the efficient energy cas-
cade to high vertical wavenumbers at 28° is associated
with the triad interaction satisfying

!k"! ! !k#! $ !kIT!

%"k"# ! %"k## ≅ %"kIT#&2!, "4#

which is the resonant condition for PSI. It is interesting
to note that spectral enhancement also occurs at small
horizontal ($500 m) and vertical wavelengths ($50 m)

(the upper-right-hand corner of the 20-day panel of Fig.
1b) where direct energy transfer from the M2 internal
tide cannot be recognized in Fig. 2. This is consistent
with the eikonal calculation by Watanabe and Hibiya
(2005) showing that the development of high-vertical-
wavenumber current shear is prerequisite to enhanced
turbulent dissipation.

Both at 49° and 18°, in contrast, no noticeable energy
cascade to high vertical wavenumbers is recognized in
the corresponding bispectra (Figs. 3 and 4). It is inter-
esting to note that, although the resonant condition (4)
can be satisfied equatorward of %30°, PSI is not oper-
ating at 18°. Actually, calculated time development of
the squared 30-m vertical shear at various latitudes
(Fig. 5) indicates that the efficiency of PSI in transfer-
ring the low-vertical-wavenumber M2 internal tide en-
ergy to high-vertical-wavenumbers rapidly drops as the
latitude falls below %25°, although the definite physical
explanation for this latitudinal dependence remains to
be explored in the future.

All the bispectra show that another type of triad in-
teraction exists between the lowest-vertical-wavenumber
M2 internal tide and two nearly identical internal waves
with horizontal wavelengths of 0.5–20 km and periods
$4 h (Figs. 2, 3, and 4). That the frequency and wave-
number of the M2 internal tide are both lowest among
the triad members [&(k') ! &(k() ) &(kIT), |k'| ! |k(| $
|kIT|] strongly suggests that this resonant interaction is
induced diffusion (ID) (McComas and Bretherton
1977). However, the amount of energy drained from
the lowest-vertical-wavenumber M2 internal tide is an
order of magnitude lower than that by PSI, indicating
that this interaction plays only a minor role in cascading
the low-mode M2 internal tide energy.FIG. 3. As in Fig. 2 but for the case at 49°N.

FIG. 2. The nonlinear energy transfer rate at 28°N. The energy
in the cold-colored area is transferred from the lowest-vertical-
wavenumber M2 internal tide, whereas the energy in the warm-
colored area is transferred to the lowest-vertical-wavenumber M2

internal tide. The red circles denote the spectral locations of in-
ternal waves satisfying the condition for resonant interaction with
the lowest-vertical-wavenumber M2 internal tide. Numerals on
the solid lines denote the wave period.

FIG. 4. As in Fig. 2 but for the case at 18°N.
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Figure 1: Pairs of frequency and vertical wavenumber satisying the resonance condition and
dispersion relation, for ω0 = 1 and l0 = l1 = l2 = 0.

Wave Initial Amplitude Initial Phase ω k m Γi

wi φi

0 1.0 3 -1 -1 10 -40.3
1 0.04 5 0.49 .12.1 -246 -4.74
2 0.02 5 0.51 -13.1 256 -5.34

Table 1: Initial values, wavenumbers, and interaction coefficients of the component waves
in a sample resonant triad.
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Figure 2: Exchange of energy between the three waves in a resonant triad. In this example,
f = 0, and the wave frequencies are ω0 = 1, ω1 = 0.2, ω2 = 0.8. Initial wave amplitudes
and phases are given in Table 1.
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Figure 4. Time variations of the two-dimensional wavenumber Froude spectrum for the case corresponding 
to Figure 3. Note that the spectrum is presented in variance-preserving form with respect to horizontal 
wavenumber. Variations of spectral density level are represented by different intensities of shading where the 
darker shade indicates greater spectral density with the range of each shading being 0.25 in the logarithm. In 
the unshaded area, spectral density values are contoured with intervals of 0.5 in the logarithm. 

3. Results 

With the start of nonlinear interactions among internal 
waves the structure of internal wave spectrum begins to be 
modified. Figure 3 shows the time variation of the vertical 
wavenumber spectrum of the vertical shear of horizontal cur- 
rent velocity normalized by the square of buoyancy frequency 
(Froude spectrum). It should be noted that the spectrum is 
calculated from data obtained from the top down to the bot- 
tom which are averaged horizontally. After five inertial periods 
from the start of calculation the spectrum becomes quasi- 
stationary where the roll-off is seen to be reproduced at vertical 
wavenumber =0.04 cpm, which is somewhat lower than ob- 
served. At the same time the shear spectral value is seen to be 
increased in the vertical wavenumber band of 0.01-0.04 cpm, 
exceeding the GM level by up to a factor of 2.5. Figure 4 shows 

the corresponding time variation of the two-dimensional wave- 
number spectrum which is presented in variance-preserving 
form with respect to horizontal wavenumber. We can see that 
the excess shear spectral values in the vertical wavenumber 
band of 0.01-0.04 cpm result mostly from the enhancement of 
higher vertical wavenumber, near-inertial (f < •0 < 2f) 
current shear. This is presumably caused by the resonant in- 
teraction termed parametric subharmonic instability (hereafter 
referred to as PSI) which transfers energy from low vertical 
wavenumber waves with frequencies over 2f to high vertical 
wavenumber, near-inertial (f < •0 < 2f) waves [McComas, 
1977; McComas and Bretherton, 1977; McComas and Maller, 
1981; Pomphrey et al., 1980]. 

In order to suppress the excess of spectral values above the 
GM level, we next perform the numerical experiment by 
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Figure 1. Dimensions of the model ocean. 

tively (Figure 1), suf•cient to resolve the interactions among 
widely disparate scales of motion. The subgrid diffusive- 
dissipative processes are parameterized with a Laplacian op- 
erator where eddy viscosity and diffusivity coef•cients are as- 
sumed to have the same values of 1 cm 2 s -a in the horizontal 
and 0.1 cm 2 s -a in the vertical, which are the smallest possible 
values needed to maintain the stability of calculations. Cyclic 
boundary conditions are employed at the lateral sides, whereas 
flat perfectly reflecting bottom and surface are assumed. The 
initial internal wave field is assumed to be composed of a sum 

Initial Condition 

Garrett-Munk 
Internal Waves 

7 Inertial Periods 

I Nonlinear Interactions 

Figure 2. Schematic diagram outlining the present numeri- 
cal experiment. 

of randomly phased linear internal waves with horizontal wave- 
numbers ranging from 0 to 0.025 cpm and vertical wavenum- 
bers ranging from 3.91 x 10 -4 to 0.2 cpm, respectively, each 
amplitude of which is determined from the GM model. As- 
suming the inertial frequency f = 7.27 x 10 -5 s -a (inertial 
period Ti = 24 hours) and the constant background buoyancy 
frequency N = 5.2 x 10 -3 s -a (3 cycles per hour), the model 
is run during seven inertial periods from the start of calculation 
with a time step of 1.5 s (see Figure 2). In order to avoid 
numerical instability, the Euler backward scheme is applied 
every 20 time steps. 
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Figure 3. Time variations of the vertical wavenumber Froude spectrum during seven inertial periods from 
the start of calculation. Note that the Garrett and Munk model spectrum is employed as an initial condition. 

GMȜȶȔȧɃǱÆƉĖ�Ǳ½$zƜ�

GMȜȶȔȧɃ�

Ț
Ȋ
Ɋ
Ȝ
ȶ
Ȕ
ȧ
Ƀ
�

ƄĘì½�

ƄĘì½�

å
�
ì
½
�

ω=2f� ω=2f� ω=2f�

ƝƄĘì½ɉŭ¨£Yì½"
ƙfǱȚȊɊɄȵɃǗk>�

t=ɒ¨£YÌ� t=6¨£YÌ�7Ìĉ§�

Hibiya"et"al.(1996)�



ƥƣƨ�

Of special importance is that the efficient energy cas-
cade to high vertical wavenumbers at 28° is associated
with the triad interaction satisfying

!k"! ! !k#! $ !kIT!

%"k"# ! %"k## ≅ %"kIT#&2!, "4#

which is the resonant condition for PSI. It is interesting
to note that spectral enhancement also occurs at small
horizontal ($500 m) and vertical wavelengths ($50 m)

(the upper-right-hand corner of the 20-day panel of Fig.
1b) where direct energy transfer from the M2 internal
tide cannot be recognized in Fig. 2. This is consistent
with the eikonal calculation by Watanabe and Hibiya
(2005) showing that the development of high-vertical-
wavenumber current shear is prerequisite to enhanced
turbulent dissipation.

Both at 49° and 18°, in contrast, no noticeable energy
cascade to high vertical wavenumbers is recognized in
the corresponding bispectra (Figs. 3 and 4). It is inter-
esting to note that, although the resonant condition (4)
can be satisfied equatorward of %30°, PSI is not oper-
ating at 18°. Actually, calculated time development of
the squared 30-m vertical shear at various latitudes
(Fig. 5) indicates that the efficiency of PSI in transfer-
ring the low-vertical-wavenumber M2 internal tide en-
ergy to high-vertical-wavenumbers rapidly drops as the
latitude falls below %25°, although the definite physical
explanation for this latitudinal dependence remains to
be explored in the future.

All the bispectra show that another type of triad in-
teraction exists between the lowest-vertical-wavenumber
M2 internal tide and two nearly identical internal waves
with horizontal wavelengths of 0.5–20 km and periods
$4 h (Figs. 2, 3, and 4). That the frequency and wave-
number of the M2 internal tide are both lowest among
the triad members [&(k') ! &(k() ) &(kIT), |k'| ! |k(| $
|kIT|] strongly suggests that this resonant interaction is
induced diffusion (ID) (McComas and Bretherton
1977). However, the amount of energy drained from
the lowest-vertical-wavenumber M2 internal tide is an
order of magnitude lower than that by PSI, indicating
that this interaction plays only a minor role in cascading
the low-mode M2 internal tide energy.FIG. 3. As in Fig. 2 but for the case at 49°N.

FIG. 2. The nonlinear energy transfer rate at 28°N. The energy
in the cold-colored area is transferred from the lowest-vertical-
wavenumber M2 internal tide, whereas the energy in the warm-
colored area is transferred to the lowest-vertical-wavenumber M2

internal tide. The red circles denote the spectral locations of in-
ternal waves satisfying the condition for resonant interaction with
the lowest-vertical-wavenumber M2 internal tide. Numerals on
the solid lines denote the wave period.

FIG. 4. As in Fig. 2 but for the case at 18°N.
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