Torsional Alfvén waves in Jupiter's metallic hydrogen region

Kumiko Hori^{1,2}, Rob Teed³, Chris Jones²

1) Graduate School of System Informatics, Kobe University. 2) Department of Applied Mathematics, University of Leeds, UK. ³⁾ School of Mathematics and Statistics, University of Glasgow, UK.

Kobe, 19 July 2018

Jupiter's metallic hydrogen region should be about the radiations of the radiations of the radiation of the radiation of the radiation of the radiation μ \mathbf{r} is the two type of integration. with interior models using the new helium of the new helium of the new helium of the new helium of the new heli nydrogen region - \mathcal{L} and \mathcal{L} abundant of abundant of \mathcal{L}

- The origin of the magnetic field/dynamo action $\mathbf s$ in et ane ma $\mathbf s$ neae neta $\mathbf s$ et $\mathbf s$
	- $-$ poorly known in data \ldots find the from function $\frac{1}{2}$
- How to infer the deep interior dynamics? not the accp interior agric $\frac{1}{2}$ R gion indicates a possibilità di R
	- through the magnetic field: woment musical neights of $\frac{1}{2}$
		- pre-Juno (n ≤ 4): strong, predominantly axial regions
dipole, secular variation? aipole, secular variations 1900 K, and *R* \$ 0.990
		- **post-Juno (** $n \le 10$ and more?): closest as ever to a dynamo region: localized patches $\frac{1}{2}$ it is located around *P* ≤ 10 and more?**):** closest as ever to
	- $-$ through any oscillations/waves? \mathcal{S} n any Oscinations/waves:
		- an electrically-conducting, low-viscous fluid in a rapidly-rotating spherical shell permeated by the magnetic field drostatic differential equations, it is a set of the se permeated by the magnetic ne ϵ scous nuid the inhomogeneous re- \mathbf{H} mass mix- \mathbf{H} ing ratios *Y* are indicated. In the case of
			- $-$ Lorentz/Coriolis = $O(1)$? ϵ of ϵ and ϵ surface temperature, ϵ
			- the rotating MHD hosts a variety of waves bars on the gravitational moments are taken y UI waves

Br inferred at surface 0.96 R (JRM09: Connerney et al. 2018)

-2.2mT **2.2mT 2.2mT**

different (*34*). The figure is adapted and updated from (*19*).

Rotating MHD waves

- Waves in the presence of both magnetic field and rotation have been studied for **incompressible fluids** and applied to **Earth's liquid iron core**
	- **torsional Alfvén waves** (e.g. Braginsky 1967, Zatman & Bloxham 1997)
		- e.g. \sim 6 yrs variation \rightarrow core internal field Bs $>$ \sim 2 mT (Gillet et al. 2010)
		- accounting for the interannual length-of-the-day variations?
	- magnetic Rossby waves (Hide 1966)
		- e.g. \sim 300 yrs westward drift \rightarrow B ϕ \sim 1-10 mT? (Hori et al. 2015)
	- MAC waves in a thin stably-stratified layer, at the top of the core?
		- axisymmetric (e.g. Braginsky 1993; Buffett 2014), fast magnetic Rossby (Chulliat et al. 2015)
- What about in Jupiter's interior?
	- density significantly varies with radius: $\rho(r_{core})/\rho(r_{metallic}) \approx 20$
		- * anelastic approximation for compressible fluids adopted

Torsional Alfvén waves

- A special class of Alfvén waves (Braginsky 1970; also Jault & Finlay 2015) :
	- $-$ The azimuthal momentum equation integrated over discription in the *all induced* $C = 2πs h(s)$ about the rotation axis:

$$
\frac{\partial}{\partial t} \int_{\mathcal{C}} \overline{\rho} u_{\phi} dS + \int_{\mathcal{C}} \hat{\mathbf{e}}_{\phi} \cdot (\nabla \cdot \overline{\rho} \mathbf{u} \mathbf{u}) dS + 2\Omega \int_{\mathcal{C}} \overline{\rho} u_s dS = \int_{\mathcal{C}} \hat{\mathbf{e}}_{\phi} \cdot (\mathbf{J} \times \mathbf{B}) dS
$$

- For anelastic/incompressible fluids, the Coriolis term vanishes 1 @
- and the magnetostrophic balance (Ro, E<<1 & Λ =O(1)) yields a steady state (Taylor 1963) *µ*0 *s*2*h* @*s* $s \leq 1$ & $\Lambda = O(1)$) vields a
- can be governed by a homogeneous equation: - Cylindrical perturbations on the state, \overline{su}_{ϕ} '> = \overline{su}_{ϕ} '>(s,t), f2 $\frac{1}{2}$ and $\frac{1}{2}$ are $\frac{1}{2}$ in $\frac{1}{2}$ is $\frac{1}{2}$ (s.t).

$$
\frac{\partial^2}{\partial t^2}\frac{\langle \overline{u'_\phi} \rangle}{s} = \frac{1}{s^3h \langle \overline{\rho} \rangle} \frac{\partial}{\partial s} \left(s^3h \langle \overline{\rho} \rangle U_A^2 \frac{\partial}{\partial s} \frac{\langle \overline{u'_\phi} \rangle}{s} \right)
$$

- propagation in radius s with Alfvén speed U_A given by z-mean quantities: $U_A = (B_s^2 > / <\rho> \mu_0)^{1/2}$ **s** i_{/{wave} ii/*n*} in propagation in radius s with Allven speed O_A given by z-mean quantities: $U_A = (8B_s^2)/(6D_s^2)\mu_0)^{1/2}$ *µ* $\frac{1}{2}$ *n* $\frac{1}{2$ ||
|--
| C --
--
--
- **•** both outward (+s) and inward (-s) propagation, $\sqrt{2}$ cor standing waves, possible **standarding** waves and the speed of the speed of the magnitude of the magnitude of the backgrounde of the background up to a forcing term \bullet **Flo**d

MHD wave, this special model is also non-dispersive, i.e. the special model in the special model in the special model in the special model in the speed in th

Torsional waves in Earth's core equatorial area. We confirm the slower propagation inferred by *Gillet et al.* [2010] as the wave gets closer to a rth's core for b

- Suppose the incompressible case
	- Alfvén speed U_A for constant ρ
- Early studies sought its standing form (e.g. Braginsky 1970; Zatman & Bloxham 1997)
- More likely travelling to the equator
	- data: 4-9 year periods (Gillet et al. 2010, 2015)
		- the internal field strength of $\langle B_s^2 \rangle^{1/2} \ge 2$ mT
	- geodynamo simulation (Wicht & Christensen 2010; Teed et al. 2014; Schaeffer et al. 2017)
		- **no obvious reflection, no standing 'oscillations'**
		- due to strong dissipation around CMB?
	- lab experiments also? (Nataf et al.)

in a dynamo simulation (Schaeffer et al. 2017)

Jovian dynamo models

- Setup (Jones 2014; also Gastine et al. 2014):
	- model a metallic region & a transition to the molecular region: $0.09RJ \le r \le 0.96RJ$ \gtrsim \sim
	- $\overline{5}$ m), – dynamos driven by rotating, anelastic convection (Lantz & Fan 1999; Braginsky & Roberts 1995)
	- a reference state (French et al. 2012):
		- **density contrast**, $\rho(r_{core})/\rho(r_{cutoff}) \sim 18$
		- electrical conductivity σ drops at r \sim 0.85RJ by more than five orders
- Some features:
	- jupiter-like magnetic fields reproduced

The reference state used in the model

Jovian dynamo models 3 H-ke

- Setup (Jones 2014; also Gastine et al. 2014):
	- model a metallic region & a transition to the molecular region: $0.09RJ \le r \le 0.96RJ$ ϵ \leq
	- dynamos driven by rotating, anelastic convection (Lantz & Fan 1999; Braginsky & Roberts 1995) \overline{c} \mathbf{F}
	- a reference state (French et al. 2012):
		- **density contrast**, $\rho(r_{core})/\rho(r_{cutoff}) \approx 18$
		- electrical conductivity σ drops at r \sim 0.85RJ by more than five orders
- Some features:
	- jupiter-like magnetic fields reproduced
	- a magnetic tangent cylinder formed
		- attaching to a top of the metallic region at the equator
		- one strong jet outside the MTC; weak multiple zonal flows inside
			- fluctuating: to be analyzed

Anelastic Alfvén speed in simulations

- Predicted Alfvén speeds $U_A = (\langle \overline{B_s}^2 \rangle / \mu_0 \langle \overline{\rho} \rangle)^{1/2}$: $\frac{1}{R}$ 2 $\frac{1}{1}$ $\frac{1}{6}$
	- independent of wavenumbers, i.e. nondispersive
	- higher for low ρ , i.e. increasing with s
	- drops to the MTC

Torsional waves in Jovian simulations

- Identified with the predicted speeds of $U_A = \frac{1}{8s^2} / \mu_0 \le \bar{p} > 1^{1/2}$ $\frac{1}{2}$ with the set
	- travelling in s, outwardly or inwardly, from an outer radius ($0.6 < s/r_{\text{cutoff}} < 0.8$)
- Reflected from the MTC
	- which acts as an interface to a resistive zone

Evolution of torsional waves

--

- Waveforms can become sharp
	- steepening; weak, unstable
		- typical for inviscid nonlinear waves
		- e.g. water waves, shock waves
		- cf. dispersive, cnoidal/solitaty Rossby ones (Hori et al. 2017)
- Reflection from the MTC
	- as well as transmission to the outside
	- reflected waves not identical to incident waves
		- due to its spherical geometries, variable background fields, nonlinearities, etc.

Alfvén waves approaching a resistive layer \mathbf{A} $\frac{1}{2}$ waves approaching a resistive layer *B* = *B*0*e*ˆ*^x* + *by*(*x*)*e*ˆ*^y , u* = *uy*(*x*)*e*ˆ*^y* (1) ∂*u^y* [∂]*^t* ⁼ *^B*⁰ *µ*ρ *Alfvén waves approaching a resistive la* permeated by a uniform background magnetic field *B*⁰ in the *x* direction. For

• Consider 1d models: the governing equations are [∂]*^t* ⁼ *^B*⁰ ∂*x* ∂*u^y* Suppose that the support \pm [∂]*^t* ⁼ *^B*⁰ .
or β *sider* 1d models:

 $\bm{B} = B_0 \hat{\bm{e}}_x + b_y(x) \hat{\bm{e}}_y \;, \quad \bm{u} = u_y(x) \hat{\bm{e}}_y$ *o*_y (*∞*) \circ *y* , \circ . $\frac{1}{\sqrt{2}}$ \hat{e}_y , $\hat{u} = u_y(x)\hat{e}_y$
 \hat{e}_y are \hat{e}_y

then the governing equations the governing equa then the governing equations

$$
\frac{\partial b_y}{\partial t} = B_0 \frac{\partial u_y}{\partial x} + \frac{\partial}{\partial x} \eta \frac{\partial b_y}{\partial x} \qquad \frac{\partial u_y}{\partial t} = \frac{B_0}{\mu \rho} \frac{\partial b_y}{\partial x}
$$

where B_0 and η are constants; η = 0 for x < 0 the constants η and η are constants; η = 0 for x < 0 *u*ere B₀ and η are constants; η = 0 for *x* < 0

είναστο με το προσπά *b n* are co ∂*b*− *y* $\frac{\partial}{\partial t}$
ants; $\eta = 0$ ∂*b*− *y* <mark>d</mark> η are c α constants; η = 0 for x < 0 where B_0 and η are constants; η = 0 for x < 0 $\hskip1cm$

• Seek solutions in form of \overline{a} = *b* crm of ∂*x* \bullet Soc \overline{C} m_o the field and velocity are continuous, i.e. the continuity condition across *x* = 0

$$
b_y = e^{i\omega t} \left(e^{-ikx} + \mathcal{R} e^{+ikx} \right) \quad \text{for } x < 0
$$

\n
$$
b_y = \mathcal{T} e^{i\omega t} e^{\lambda x} \qquad \text{for } x > 0 \text{ (with complex } \lambda)
$$

יי with continuous conditions across the interface $x = 0$: $\frac{1}{2}$ *decross the interface x = 0:* α ross the interface $x = 0$: +
" ∂²*b^y* ∂²*b^y* $\frac{1}{y}$ *i* $\frac{\partial b_y^+}{\partial y}$

$$
b_y^- = b_y^+, \quad \frac{\partial b_y^-}{\partial x} = \frac{\partial b_y^+}{\partial x}
$$

 \overline{a} to yield the reflection coefficients for $\omega >> V_{\sf A}{}^2/\eta_0$: $b_y = b_y$, $\frac{\partial x}{\partial x} = \frac{\partial x}{\partial x}$ $\frac{1}{2}$ **e**₁ **e**_{*i*} (*x*) *t*_{*g*} *e*_{*i*} (*x*) *t*_{*g*} *e*_{*i*} (*x*) *e*_{*i}* ents $(0 \gg \sqrt{4})$ $\frac{1}{0}$. $\frac{\partial x}{\partial n}$ (coefficients for $\omega >> V_s{}^2/n_o$) $\frac{\partial x}{\partial x}$ *ox*
to yield the reflection coefficients for ω >> V_A²/η₀:

$$
\mathcal{R}=\frac{ik+\sqrt{\omega/2\eta_0}(-1+i)}{ik-\sqrt{\omega/2\eta_0}(-1+i)}\ ,\quad \mathcal{T}=1+\mathcal{R}
$$

— for large $\omega >> k^2\eta_0$, then R \sim -1 & T \sim 0: perfect reflection > k²η₀, then R [∼] −1 & T [∼] 0: perfect reflection \overline{a} ω $>$ \ge k^2 n₀, then R \sim -1 & T \sim 0; perfect reflection the $-$ for large $ω \gg k^2$ η₀, then $R \sim -1$ & T ~ 0; perfect Note this all about *by*: since *u*[−] *^y* , the negative reflection in *b^y* yields a positive reflection in *uy*. *^y* ∼ *±ikb*[−] *^e*−i*kx* ⁺ *^Re*ⁱ*kx*" for *x <* ⁰ (C.5) *b*^{*w*} *x n i*_l(*j*, *encirin* $\pm \alpha$ *i b*, *pericurience*

− u_y ~ db_y/dx: a negative reflection in b_y yields a positive reflection in u_y **a** επιλειτικής επειτικής του προσταθείς στη συνατιστικής προσταθείς προσταθείς προσταθείς προσταθείς προσταθείς π
αποτελεία παι προσταθείς προσταθείς προσταθείς προσταθείς προσταθείς προσταθείς προσταθείς προσταθείς προ *x* $\frac{1}{2}$ = $\frac{1}{2}$ = *− u*_y ∼ db_y/dx: a negative reflection in b_y yields a positive reflectior

Excitation mechanism **d** $\frac{1}{2}$ **FLD** + **FLD** + **FLD** + **FLD** + **FLD** *^s*3*h*h⇢i*U*² :XCI1 *dt* = *F*^R + *F*LD + *F*^V (12)

 $1.8E + 06$

 $1.2E + 06$

 $6.0E + 05$

 $0.0E + 00$

 $-6.0E + 05$

 $-1.2E + 06$

 $-1.8E + 06$

 $1.8E + 06$

 $1.2E + 06$

 $6.0E + 05$

 $0.0E + 00$

 $-6.0E + 05$

 $-1.2E + 06$

 $-1.8E + 06$

@

Torsional 'oscillations' possible

- Zonal flow fluctuations in another case
	- standing inside the MTC
		- travelling from an outer radius both inwardly and outwardly
		- superposition with reflected waves enables standing waves
	- only transmitted outside the MTC
		- while being absorbed
		- \rightarrow The nature signifying the depth?

Detectable on Jupiter?

- Typical timescales
	- Given a field of **Bs** \sim **3 mT** & $\rho \sim$ 853 kg/m³ at the equator at a top of the metallic region (\sim 0.85 R_I), then Alfvén speed \sim 9.2 $\rm *10^{-2}$ m/s
	- TW traveltimes across the metallic region can be **9-13 years**
		- Note: the internal field uncertain
- TW seen on a spherical surface above the metallic region
	- $-$ amplitude < 1/10 of our zonal jet outside MTC
	- cf. changes in the zonal wind at the cloud level? (Tollefson et al. 2017)
	- cf. global upheavals?? (e.g. Rogers 1995)

Filtered, zonal velocity fluctuation u'_{ϕ}/max(\overline{U}_ϕ) at the cutoff boundary (\sim 0.96 R_J) in the southern hemisphere --
'' /mav/IT

Long-term changes at the cloud deck? $\overline{}$

STRE
LE NEBS
NITES

 Ω

 $\overline{2}$

 $IBBO -$

 $1890 -$

1900

- Zonal wind speed
	- In-situ (Cassini vs. Voyager 2) reported (Porco et al. 2003)
	- ground/HST campaigns (2009-2016) identified relevant variability near 24 °N & 5-7 year periods at lower latitudes (Tollefson et al. 2017)
- Coloration, brightening, outbreak events, etc.
	- sketched for > 100 years: 'global upheavals' (Rogers 1995; Fletcher 2017)
	- irregularly, but periodic at some epoch at NTB?

Length-of-day variations

- TW transport the angular momentum
- $-$ almost-perfectly exchanging the angular momentum $\delta \sigma$ with the overlying molecular region, where

$$
\delta\sigma=2\pi\int_{s_{\rm tc}}^{s_{\rm mtc}}\int_{z_-}^{z_+}h\langle\rho_{\rm eq}\rangle s^2\langle\overline{u'_\phi}\rangle dzds
$$

- This may fluctuate the planet's rotation rate (LOD) \mathbf{r} and the region, \mathbf{r} is the region, \mathbf{r}
	- the change $\delta \sigma = -2\pi$ I $\delta P/P^2$ implying an LOD variation δP ! ^rcut ! ^z⁺ Ω implying an LOD variation δP

Jovian LOD changes?

- The gas giant's rotation rate
	- System III (1965): 9h 55m 29.71s
		- relying on measurements of decametric radial emission from the magnetosphere (Burke & Franklin 1955)
		- the accuracy in $O(10^{-2}s)$ has been some debate
			- the true change (Higgins et al. 1996, 1997)
			- $-$ jovimagnetic SV (Russell et al. 2001; Ridley & Holme 2016)

Summary

Axisymmetric, torsional Alfvén waves possibly excited in Jupiter's metallic H region

- identified in Jovian dynamo simulations
	- implementing a smooth transition from the metallic to molecular regions, forming a magnetic TC
- propagating in cylindrical radius with Alfvén speeds $\sim B_s/\rho^{1/2}$
	- on timescales of $O(10^{0.1} \text{ yrs})$ for an equatorial field of 1-3 mT
		- Note: the dimensional values may vary
	- reflections from MTC, also standing 'oscillations', may reveal the radius
	- angular momentum exchanges with the overlying molecular region, fluctuating LOD
	- detectable in surface zonal flows beyond the metallic region

Thank you

Anelastic spherical dynamo simulations *•* dynamo simulations (table 1) @*B* @*^t* ⁼ r ⇥ (*^u* ⇥ *^B*) r⇥ (⌘r ⇥ *^B*) *,* ^r *· ^B* = 0 (3)

- MHD dynamos driven by anelastic convection in rotating spherical shells
- adopting the Lantz-Braginsky-Roberts formalism (Lantz & Fan 1999: Braginsky & Roberts en by aneia
• ^{Rroginsky R} ς l $\overline{ }$ nvection i n rotating spn)
2 + *0 F* + ⁴⁰⁰⁰ .
ا د \overline{a}
	- ← adopting the Lantz-Braginsky-Roberts formalism (Lantz & Fan 1999; Braginsky & Roberts 1995; also Jones+ 2011) thig the Earltz Bragmon, nobel to formation, (cantz & fair 15.
also Jones+ 2011) ⇢*T* r *·* ts formalism (La
	- ← dimensionless, governing equations about the reference state:

$$
\nabla \cdot \overline{\rho} \mathbf{u} = 0
$$

\n
$$
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{Pm}{E} \left[\nabla \hat{p} + 2 \hat{e}_z \times \mathbf{u} - \frac{1}{\overline{\rho}} (\nabla \times \mathbf{B}) \times \mathbf{B} \right] - \frac{Pm^2 Ra}{Pr} \frac{d\overline{T}}{dr} S \hat{e}_r + Pm \mathbf{F}_V
$$

\n
$$
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times (\overline{\eta} \nabla \times \mathbf{B}), \quad \nabla \cdot \mathbf{B} = 0
$$

\n
$$
\frac{\partial S}{\partial t} + \mathbf{u} \cdot \nabla S = \frac{Pm}{Pr} \left[\frac{1}{\overline{\rho}} \nabla \cdot (\overline{\rho} \overline{T} \nabla S) + H \right] + \frac{Pr}{PmRa\overline{T}} \left[\frac{1}{E} \frac{\overline{\eta}}{\overline{\rho}} (\nabla \times \mathbf{B})^2 + Q_V \right]
$$

 $-$ with Ekman, kinetic/magnetic Prandtl, and Rayleigh numbers with mid-depth values (X_m): Also, the dimensionless parameters are

$$
E = \frac{\nu}{\Omega d^2}, \quad Pr = \frac{\nu}{\kappa} \quad Pm = \frac{\nu}{\eta_m}, \quad Ra = \frac{T_m d^2 \Delta S}{\nu \kappa}
$$

(1.5-2.5)*10⁻⁵ 0.1 3 0(10⁷)
0(10⁻¹⁸) 0.1-1 0(10⁻⁷)

• Leeds spherical dynamo code: based on pseudo spectral method ⇤*|* α and β and β are *n* and the *n* ethod