next up previous contents
: $B$^$H$a(B: 1D-SHASTA : 1$B : $BM"Aw2aDx(B   $BL\

$BJd@52aDx(B

$B?^(B 2: 1D $B$NITO"B3LL$NEAGE$H(B antidiffusion $B$N1F6A(B (Boris and Book(1973),$B?^(B2$B$r4p$K:n@.(B)
\begin{figure}\begin{center}
\Depsf[80mm][]{ps-fig/fig2.ps}
\end{center} \end{figure}

(5)$B<0$+$iL@$i$+$J$h$&$K(B SHASTA $B$K$OB.EY$K0MB8$7$?3H;6$,(B $B4^$^$l$F$$$k(B. $u=0$ $B$N>l9g$K$b(B

\begin{displaymath}
\rho _{i}^{n+1} = \rho _{i}^{n}
+ \frac{1}{8}(\rho _{i+1}^{n}-2\rho _{i}^{n}
+\rho _{i-1}^{n}),
\end{displaymath} (6')

$B$H$J$C$F3H;6$,;D$C$F$7$^$&(B. $B$3$l$r=|$$$?=$@52r(B $\overline{\rho }_
{i}^{n+1}$ $B$r5a$a$k$?$a$K(B, (6)$B<0$rM[2rK!$G5U$K2r$/(B.

\begin{displaymath}
\overline{\rho }_{i}^{n+1} = \rho _{i}^{n+1}
- \frac{1}{8}(\rho _{i+1}^{n+1}-2\rho _{i}^{n+1}
+\rho _{i-1}^{n+1}),
\end{displaymath} (7')

(7)$B<01&JUBhFs9`$r(B ``antidiffusion'' $B$H8F$V(B. ([*])$B$O7A<0E*$K0\N.7A$K$9$k$3$H$,$G$-$k(B. $B$9$J$o$A(B,

$\displaystyle \overline{\rho }_{i}^{n+1}$ $\textstyle =$ $\displaystyle \rho _{i}^{n+1} -
(f_{i+\frac{1}{2}} - f_{i-\frac{1}{2}}),$ (8')
$\displaystyle f_{i\pm \frac{1}{2}}$ $\textstyle \equiv$ $\displaystyle \pm \frac{1}{8}(\rho _{i\pm
1}^{n+1}-\rho _{i}^{n+1}),$ (9')

$B$H$J$k(B. $f_{i\pm \frac{1}{2}}$ $B$O(B antidiffusive $B%U%i%C%/%9(B $B$H8F$V(B.

$B$3$N(B antidiffusion $B$^$?$O(B antidiffusive $B%U%i%C%/%9$r2C$($l$P?tCM3H;6(B $B$r=|5n$9$k$3$H$,$G$-$k$N$G(B,$B$$$D$G$b@5$7$$2r$,F@$i$l$k$+$H$$$&$H2$B$N$h$&$JITO"B3LL$,0lDj$NB.EY(B $B$G0\N.$5$l$k$h$&$J>l9g$r9M$($F$_$h$&(B. $B$"$k;~9o$G?^$N$h$&$K@5$7$$2r(B $B$,F@$i$l$F$$$k$H$9$k(B. $B$3$l$K(B antidiffusion $B$r2C$($k$H?^$K<($7$?Lp(B $B0u$N$h$&$K(B $i$ $B$G$NCM$OA}2C$7(B $i+1$ $B$NCM$O8:>/$7$F$7$^$&(B. $B$h$C$F?7(B $B$?$K6KCM$r:n$j=P$9$3$H$K$J$k(B. $B$H$/$KHsIi$NJ*M}NL$r7W;;$7$F$$$k>l(B $B9g$O(B $i+1$ $B$KIi$NCM$,@8$8$F$7$^$&(B. $BL@$i$+$K$3$l$OHsJ*M}E*$J2r$G$"(B $B$k(B.

antidiffusion $B$r2C$($k$H$-$O0J>e$N$h$&$JHsJ*M}E*$J2r$r@8$8$J$$$h$&(B $B$KCm0U$7$J$1$l$P$J$i$J$$(B. $B$9$J$o$A(B,

$B$H$$$&>r7o$rK~$?$9$h$&$K(B $f_{i\pm \frac{1}{2}}$ $B$r2C$($J$1$l$P$J$i(B $B$J$$(B. $B$=$3$G0J2<$N$h$&$JJd@5%U%i%C%/%9(B( corrected flux ) $f^{c}_{i\pm
\frac{1}{2}}$ $B$r?7$?$KDj5A$7(B, $B$3$l$r(B(8)$B<0$N(B $f_{i\pm \frac{1}{2}}$ $B$HCV$-49$($FMQ$$$k$3$H$K$9$k(B.


\begin{displaymath}
f^{c}_{i+\frac{1}{2}} \equiv S_{i+\frac{1}{2}} \mbox{max}
...
...{1}{2}}\vert, \; S_{i+\frac{1}{2}}\Delta _{i+\frac{3}{2}})\},
\end{displaymath} (10')


\begin{displaymath}
\Delta _{i+\frac{1}{2}} = \rho _{i+1}^{n+1}-\rho _{i}^{n+1},
\end{displaymath} (11')


\begin{displaymath}
S = \left\{
\begin{array}{lcl}
+1 & \mbox{if} & f_{i+\fr...
...
-1 & \mbox{if} & f_{i+\frac{1}{2}} < 0
\end{array} \right.
\end{displaymath} (12')

$B?^(B 3: $BJQ?t$Net al.(1973),$B?^(B6$B$r4p$K:n@.(B)
\begin{figure}\begin{center}
\Depsf[120mm][]{ps-fig/fig3.ps}
\end{center} \end{figure}

$B$3$NJd@5%U%i%C%/%9$O$I$N$h$&$J>l9g$K:nMQ$9$k$h$&Dj5A$5$l$?$N$+6qBN(B $BE*$JNc$r5s$2$FD4$Y$F$_$k(B. Fig.3$B$K$O(B $f_{i+\frac{1}{2}}>0$ $B$N$H$-$Kl9g(B $f^{c}_{i\pm
\frac{1}{2}}$ $B$O?^$K<($7$?Lp0u$NHO0O$^$GJd@5$7(B $B$&$kBg$-$5$r$H$k$3$H$,$G$-$k(B. $B$=$l0J>e$NBg$-$5$K$J$k$H?7$?$K6KCM$,(B $B@8$8$F$7$^$&(B. $B$3$l$KBP$7(B (b)$\sim $(d) $B$N>l9g(B $f^{c}_{i\pm
\frac{1}{2}}$ $B$O(B 0 $B$K$7$J$/$F$O$J$i$J$$(B. $B$=$&$7$J$$$H4{$KB8:_$7$F(B $B$$$k6KBg(B($B6K>.(B)$B$,[email protected]$7$F$7$^$$(B, $B@h$K=R$Y$?$h$&$JHsJ*M}E*$J2r(B $B$,@8$8$k$h$&$K$J$C$F$7$^$&$+$i$G$"$k(B. (10)$\sim $(12)$B<0$GM?$($?Jd@5%U%i%C%/%9$O(BFig.3(a)$B$N$h(B $B$&$J>l9g$K6KCM$r@8$8$J$$$h$&:nMQ$9$k$h$&$K9*L/$KDj5A$7$?$b$N$J$N$G(B $B$"$k(B.


next up previous contents
: $B$^$H$a(B: 1D-SHASTA : 1$B : $BM"Aw2aDx(B   $BL\
odakker $BJ?@.(B18$BG/(B2$B7n(B13$BF|(B