next up previous
: 10 $BCO5eDj?t(B : DCAPM4 $BBh(B1$BIt(B $B?tM}%b%G%k2=(B : 8 $B1tD>%U%#%k%?!<(B


9 $B;YG[J}Dx<07O$NF3=P(B

$B;YG[J}Dx<07O$NF3=P(B

.0 .00 .0 .00

.1 $B@_Dj(B

$BA4Bg5$$O(B, $B$H$b$KM}A[5$BN$G$"$k4%Ag6u5$$*$h$S?e>x5$$+$i@.$k:.9gBg5$$H$9(B $B$k(B. $B1@?eNL$OL5;k$9$k(B. $B$^$?(B, $B?e>x5$NL$,A4Bg5$$K@j$a$k3d9g$O>.$5$$$H2>Dj(B $B$7(B, $BA4Bg5$$NDj05HfG.$r4%AgBg5$$NCM$G6a;w$9$k(B.

$B?e>x5$NL$NJ]B8$K$D$$$F$O(B, $B6E7k$*$h$S>xH/$K$h$k@8@.>CLG$r9MN8$9$k(B. $B$7$+(B $B$7(B, $B$3$NNL$,A4Bg5$$KM?$($k8z2L$O>.$5$$$H$7(B, $BA4Bg5$$N $B=ENO2CB.EY$OCO5eCf?4$K8~$$$F$$$k$H2>Dj$9$k(B. $B$^$?(B, $B1?F0$N?eJ?%9%1!<%k$,(B $B1tD>%9%1!<%k$h$j$b$+$J$jBg$-$$1?F0$rA[Dj$7(B, $B@ENO3XJ?9U6a;w$r9T$J$&(B. $B$5(B $B$i$K(B, $B1?F0$OCO5eI=LLIU6a$K8B$i$l$k$3$H$r2>Dj$7$F6a;w$r9T$J$&(B. .0 .00 .0 .00

.2 $B4pACJ}Dx<07O$NF3=P(B

$BJ}Dx<07O$O(B 6 $BK\$NM=JsJ}Dx<0$H(B 1 $BK\$N?GCGJ}Dx<0$+$i$J$k(B. $BM=JsJ}Dx<0$O(B, $BA4x5$NL$N<0(B, $B1?F0J}Dx<0(B(3 mail protected],(B), $BG.NO3X$N<0$+$i$J$k(B. $B$3$l$i$O(B, $B$=$l$>$l(B, $BA4x5$NL$NJ]B8B'(B, $BA4uBVJ}Dx<0$rMQ$$$k(B. .1

$B!*!*Cm0U(B: $B$3$N(B Appendix $BCf$G$OF3=P$NET9g>e(B, $B4%Ag6u5$$N5$BNDj?t$r(B $R^d$ $BDj05HfG.$r(B $c_p^d$ $B$H$7(B, $BA4Bg5$$N5$BNDj?t$r(B $R$ $B$H$*$$$?(B. $B$7$+$7(B, $BK\J8(B $BCf$G$O(B, $B4%Ag6u5$$N5$BNDj?t$r(B $R$, $BDj05HfG.$r(B $c_p$ $B$HI=5-$7$F$$$k(B.

.2.1 $B>uBVJ}Dx<0(B

$B4%Ag6u5$(B, $B?e>x5$$N>uBVJ}Dx<0$O$=$l$>$l(B

$\displaystyle p^d$ $\textstyle =$ $\displaystyle \rho^{d} R^d T,$ (.1)
$\displaystyle p^v$ $\textstyle =$ $\displaystyle \rho^{v} R^v T,$ (.2)

$B$G$"$k(B. $B$3$3$G(B $\bullet^d$, $\bullet^v$ $B$O$=$l$>$l4%Ag6u5$$*$h$S?e(B $B>x5$$K4X$9$kNL$G$"$k$3$H$r<($9(B. $B$7$?$,$C$F(B, $BA405(B $p=p^d+p^v$ $B$O(B,
$\displaystyle p$ $\textstyle =$ $\displaystyle (\rho^d R^d + \rho^v R^v) T$ (.3)
  $\textstyle =$ $\displaystyle \rho R^d ( 1 + \epsilon_v q ) T,$ (.4)

$B$H$J$k(B. $B$3$3$G(B, $q=\rho_v/\rho$ $B$OHf<>(B, $B$G$"$j(B, $\epsilon_v \equiv
1/\epsilon -1$, $\epsilon \equiv R^d/R^v(=0.622)$ $B$G$"$k(B. $B$7$?$,$C$F(B, $BA4Bg5$$N>uBVJ}Dx<0$O(B,
\begin{displaymath}
p = \rho R T.
\end{displaymath} ( .5)

$B$?$@$7(B, $R \equiv R^d ( 1+\epsilon_v q )$ $B$G$"$k(B. $B$"$k$$$O(B, $B2>29EY(B $T_v \equiv T ( 1 + \epsilon_v q )$ $B$rMQ$$$l$P(B,
\begin{displaymath}
p = \rho R^d T_v.
\end{displaymath} ( .6)

.2.2 $BO"B3$N<0(B

$BA4Bg5$$Nx5$$N@8@.>CLG$rL5;k$9$l$P(B, .2

\begin{displaymath}
\DP{\rho}{t}
+ \DP{}{x_j}( \rho v_j )
= 0.
\end{displaymath} ( .7)

$B$"$k$$$O(B, $B%i%0%i%s%8%e7A<0$G5-=R$9$l$P(B,
\begin{displaymath}
\DD{\rho}{t}
+ \rho \Ddiv \Dvect{v}
= 0.
\end{displaymath} ( .8)

.2.3 $B?e>x5$$N<0(B

$B?e>x5$L)EY(B $\rho^v$ $B$KBP$9$kCLGNL$r(B $S$ $B$H$9$l$P(B,

\begin{displaymath}
\DP{\rho^v}{t}
+ \DP{}{x_j} ( \rho^v v_j )
= S.
\end{displaymath} ( .9)

$BHf<>(B $q=\rho^v/\rho$ $B$K4X$9$k<0$O(B, $B86M}E*$K$O<0(B([*]) $B$H<0(B(A.9) $B$+$iF@$k$3$H$,$G$-$k(B. $B$7$+$7(B, $B:#$N>l9g(B, $B<0(B(A.7)$B$G?e>x5$$N@8@.>CLG$rL5;k$7$?$N$G(B, $B@5$7$/$OF@$i$l$J$$(B. $B$=$3$GHf<>$N@8@.>CLG$K4X$9$k9`$r2~$a$F(B $S_q$ $B$HDj(B $B5A$9$k(B.
\begin{displaymath}
\DD{q}{t} = S_q.
\end{displaymath} ( .10)

.2.4 $B1?F0J}Dx<0(B

$B1?F0NLJ]B8B'$O(B, $B?e>x5$$N@8@.>CLG$K$H$b$J$&1?F0NLJQ2=$rL5;k$9$l$P

\begin{displaymath}
\DP{}{t}(\rho v_i)
+ \DP{}{x_j}( \rho v_i v_j )
+ \DP{p}{x_i}
- \DP{\sigma_{ij}}{x_j}
+ \rho \DP{\Phi^*}{x_i}
= F'_i.
\end{displaymath} ( .11)

$B$3$3$G(B, $p$ $B$O05NO(B, $\sigma_{ij}$ $B$OG4@-1~NO%F%s%=%k(B, $\Phi^*$ $B$OCO5e(B $B$N0zNO$K$h$k%]%F%s%7%c%k(B .3 , $F'_i$ $B$O$=$NB>$N30NO9`$G$"$k(B. $B$"$k$$$OO"B3$N<0(B $B$rMQ$$$F%i%0%i%s%8%e7A<0$G5-=R$9$k$H(B

\begin{displaymath}
\rho \DD{v_i}{t}
+ \DP{p}{x_i}
- \DP{\tau_{ij}}{x_j}
+ \rho \DP{\Phi^*}{x_i}
= F'_i,
\end{displaymath} ( .12)

$B$H$J$k(B. $B$3$3$G(B, $BG4@-9`$H30NO9`$r(B $F_i$ $B$H$*$-(B, $B$5$i$K%Y%/%H%kI=<($9$k(B
\begin{displaymath}
\rho \DD{\Dvect{v}}{t}
+ \Dgrad p
+ \rho \Dgrad \Phi^*
= \Dvect{F}.
\end{displaymath} ( .13)

.2.5 $BG.NO3X$N<0(B

$BC10L $B$HFbIt%((B $B%M%k%.!<(B $\varepsilon$ $B$*$h$\%]%F%s%7%c%k%(%M%k%.!<(B $\Phi^*$ $B$NOB$GI=(B $B8=$5$l$k(B. $B$3$N;~4VJQ2=N($N<0$O(B, $B?e>x5$$N@8@.>CLG$K$h$k1F6A$rL5;k$9$l$P(B,

\begin{displaymath}
\DP{}{t}
\left[ \rho
\left( \frac{1}{2} \Dvect{v}^2
+...
...v_j
+ p v_j - \sigma_{ij}v_i
\right]
= \rho Q + F'_i v_i,
\end{displaymath} ( .14)

$B$G$"$k(B. $B$3$3$G(B, $Q$ $B$O303&$+$i$N2CG.N($G$"$k(B. $B0lJ}(B, $B1?F0%(%M%k%.!<$H%](B $B%F%s%7%c%k%(%M%k%.!<$NOB$NJ]B8<0$O(B, $B1?F0NLJ]B8<0(B ([*]) $B$K(B $v_i$ $B$r$+$1O"B3$N<0$rMQ$$$FJQ7A$9$k$3$H$GF@$i$l$k(B. $BJQ7A$N:]$K(B $B$O(B $\DP{\Phi^*}{t}=0$ $B$G$"$k$H$7$F$$$k(B. .4
\begin{displaymath}
\DP{}{t} \left( \frac{1}{2} \rho v_i^2 + \rho \Phi^* \right...
...ht)
= p \DP{v_j}{x_j} - \sigma_{ij} \DP{v_i}{x_j} + F'_i v_i,
\end{displaymath} ( .15)

$B$H$J$k(B. $B<0(B (A.14) $B$+$i<0(B ([*]) $B$r0z$-5n$k$H(B, $B
\begin{displaymath}
\DP{}{t} ( \rho \varepsilon )
+ \DP{}{x_j} ( \rho \varepsi...
... )
= - p \DP{v_j}{x_j} + \sigma_{ij} \DP{v_i}{x_j}
+ \rho Q.
\end{displaymath} ( .16)

$BO"B3$N<0$rMQ$$$F%i%0%i%s%8%e7A<0$K=q$-D>$;$P(B
\begin{displaymath}
\rho \DD{\varepsilon}{t}
= \frac{p}{\rho} \left( \DD{\rho}{t} \right)
+ \rho Q.
\end{displaymath} ( .17)

$B$3$3$G(B, $B303&$+$i$N2CG.$N9`$HG4@-$K$h$k2CG.$N9`$r$^$H$a$F(B $Q^*$ $B$H$*$$(B $B$?(B.

$BFbIt%(%M%k%.!<$r29EY$rMQ$$$FI=8=$9$k$H(B $\varepsilon = c_v T$ $B$G$"(B $B$k(B. $B$5$i$K>uBVJ}Dx<0(B (A.5) $B$rMQ$$$F<0(B (A.17) $B$rJQ7A$9$k(B. $c_p = c_v + R$ $B$G$"$k$3$H$KCm0U$9$l$P(B

\begin{displaymath}
\DD{c_p T}{t} = \frac{1}{\rho} \DD{p}{t} + Q^*,
\end{displaymath} ( .18)

$B$H$J$k(B. $B$3$3$G(B, $c_p$ $B$r4%Ag6u5$$NDj05HfG.(B $c_p^d$ ($BDj?t(B) $B$G6a;w$9$k$H(B .5$B
\begin{displaymath}
\DD{T}{t} = \frac{1}{c_p^d \rho} \DD{p}{t} + \frac{Q^*}{c_p^d}.
\end{displaymath} ( .19)

.5% latex2html id marker 9133
\setcounter{footnote}{5}\fnsymbol{footnote} .55 .5% latex2html id marker 9134
\setcounter{footnote}{5}\fnsymbol{footnote} .55

.3 $B2sE>7O$X$NJQ49(B

.3.1 $B2sE>7O$X$NJQ498x<0(B

$BJ}Dx<07O$r(B, $B0lDj$N<+E>3QB.EY(B $\Dvect{\Omega}$ $B$G2sE>$9$k2sE>7O$KJQ49$9(B $B$k(B.

.3.2 $B%9%+%i!<$NJQ498x<0(B

$B47@-7O$K$*$1$k;~4VHyJ,$rE:;z(B a $B$G(B, $B2sE>7O$rE:;z(B r $B$GI=8=$9$k(B. $B$3$N$H$-(B, $BG$0U$N%9%+%i!<(B $\psi$ $B$KBP$7$F(B,

\begin{displaymath}
\left( \DD{\psi}{t} \right)_{\rm a}
= \left( \DD{\psi}{t} \right)_{\rm r},
\end{displaymath} ( .20)

$B$,@.$j$?$D(B. .6

.3.3 $B%Y%/%H%k$NJQ498x<0(B

$BG$0U$N%Y%/%H%k(B $\Dvect{A}$ $B$KBP$9$k47@-7O$*$h$S2sE>7O$G$NHyJ,$O

\begin{displaymath}
\left( \DD{\Dvect{A}}{t} \right)_{\rm a}
= \left( \DD{\Dvect{A}}{t} \right)_{\rm r}
+ \Dvect{\Omega} \times \Dvect{A}.
\end{displaymath} ( .21)

($B>ZL@(B) $BG$0U$N%Y%/%H%k(B $\Dvect{A}$ $B$r(B, $B47@-7O$G$O(B

  $\textstyle \Dvect{A} =$ $\displaystyle \Dvect{i} A_x
+ \Dvect{j} A_y
+ \Dvect{k} A_z$ (.22)

$B$HI=$7(B, $B2sE>7O$G$O(B
  $\textstyle \Dvect{A} =$ $\displaystyle \Dvect{i}' A'_x
+ \Dvect{j}' A'_y
+ \Dvect{k}' A'_z$ (.23)

$B$HI=$9(B. $B;~4VHyJ,$r$H$k$H(B
$\displaystyle \left( \DD{\Dvect{A}}{t} \right)_{\rm a}$ $\textstyle =$ $\displaystyle \Dvect{i} \left( \DD{A_x}{t} \right)_{\rm a}
+ \Dvect{j} \left( \DD{A_y}{t} \right)_{\rm a}
+ \Dvect{k} \left( \DD{A_z}{t} \right)_{\rm a}$  
  $\textstyle =$ $\displaystyle \Dvect{i}' \left( \DD{A'_x}{t} \right)_{\rm a}
+ \Dvect{j}' \left...
...t{j}'}{t} \right)_{\rm a} A'_y
+ \left( \DD{\Dvect{k}'}{t} \right)_{\rm a} A'_z$  
  $\textstyle =$ $\displaystyle \Dvect{i}' \left( \DD{A'_x}{t} \right)_{\rm r}
+ \Dvect{j}' \left...
...+ \Dvect{\Omega} \times \Dvect{j}' A'_y
+ \Dvect{\Omega} \times \Dvect{k}' A'_z$  
  $\textstyle =$ $\displaystyle \left( \DD{\Dvect{A}}{t} \right)_{\rm r}
+ \Dvect{\Omega} \times \Dvect{A}.$ (.24)

($B>ZL@=*$j(B)

$B$3$3$G(B $\Dvect{A}=\Dvect{r}$ ( $\Dvect{r}$ $B$O0LCV%Y%/%H%k(B ) $B$H$*$1$P47(B $B@-7O$G$NB.EY(B $\Dvect{v}_a \equiv (d\Dvect{r}/dt)_{\rm a}$ ($B$3$l$^$G$N(B $\Dvect{v}$) $B$O2sE>7O$G$NB.EY(B $\Dvect{v} \equiv (d\Dvect{r}/dt)_{\rm
r}$ $B$rMQ$$$F

\begin{displaymath}
\Dvect{v}_a = \Dvect{v} + \Dvect{\Omega} \times \Dvect{r}.
\end{displaymath} ( .25)

$B$5$i$K(B, $B<0(B(A.21) $B$G(B $\Dvect{A}=\Dvect{v}_{\rm a}$ $B$H$*(B $B$1$P(B, $BB.EY$N;~4VHyJ,9`$O(B
\begin{displaymath}
\DD{\Dvect{v}_a}{t}
= \DD{\Dvect{v}}{t} + 2 \Dvect{\Omega}...
...
+ \Dvect{\Omega} \times ( \Dvect{\Omega} \times \Dvect{r} ),
\end{displaymath} ( .26)

$B$HJQ49$G$-$k(B.

.3.4 $B2sE>7O$X$NJQ49(B

$BJQ49$N<0(B (A.26) $B$rMQ$$$F1?F0J}Dx<0$r2sE>7O$G5-=R$9$k(B.

\begin{displaymath}
\DD{\Dvect{v}}{t}
= - \frac{1}{\rho} \Dgrad p
- 2 \Dvect...
...vect{\Omega} \times \Dvect{r} )
+ \Dgrad \Phi^* + \Dvect{F}.
\end{displaymath} ( .27)

$B$3$3$G(B, $B=ENO2CB.EY(B $\Dvect{g} \equiv \Dgrad \Phi^* - \Dvect{\Omega}
\times ( \Dvect{\Omega} \times \Dvect{v})$ $B$rDj5A$9$l$P(B, $B1?F0J}Dx<0$O(B
\begin{displaymath}
\DD{\Dvect{v}}{t}
= - \frac{1}{\rho} \Dgrad p
- 2 \Dvect{\Omega} \times \Dvect{v}
+ \Dvect{g} + \Dvect{F},
\end{displaymath} ( .28)

$B$H$J$k(B.

$BO"B3$N<0$*$h$SG.NO3X$N<0$K$*$$$F$O(B, $B%i%0%i%s%8%eHyJ,$,:nMQ$7$F$$$kL)EY(B $B$*$h$S29EY$O:BI8JQ49$KL54X78$J%9%+%i!<$G$"$k$?$a(B, $B$=$N;~4VHyJ,$N7A$OJQ(B $B$o$i$J$$(B. $BO"B3$N<0$O(B, $BB.EY>l$NH/;6$r4^$`$,(B, $B$3$l$O:BI8JQ49$K$h$C$F$bCM(B $B$OJQ$o$i$J$$(B. $B$7$?$,$C$F(B, $B$3$l$i$N<0$O7A$rJQ$($J$$(B. .7 .7% latex2html id marker 9178
\setcounter{footnote}{7}\fnsymbol{footnote} .77 .7% latex2html id marker 9179
\setcounter{footnote}{7}\fnsymbol{footnote} .77

.4 $B5e:BI8$X$NJQ49(B

.4.1 $BD>8r6J@~:BI87O$K$*$1$kHyJ,(B

$B0lHL$ND>8r6J@~:BI8(B $(\xi_1, \xi_2, \xi_3)$ $B$K$*$$$F(B, $B%9%+%i!<(B $\bullet$ $B$*$h$S%Y%/%H%k(B $\Dvect{A}=(A_1, A_2, A_3)$ $B$O $B$O3F<4J}8~$N5,LO0x;R$G$"$j(B, $B3F<4J}8~$N4pDl%Y%/%H%k(B $B$O(B $\Dvect{e}_i$ $B$H$9$k(B.

\begin{displaymath}
\Dgrad \bullet
= \left( \frac{1}{h_1} \DP{\bullet}{\xi_1},...
...{\bullet}{\xi_2},
\frac{1}{h_3} \DP{\bullet}{\xi_3} \right),
\end{displaymath} ( .29)


\begin{displaymath}
\Ddiv \Dvect{A}
= \frac{1}{h_1 h_2 h_3}
\left[ \DP{}{\x...
...\xi_2} ( h_1 h_3 A_2)
+ \DP{}{\xi_3} ( h_1 h_2 A_3)
\right],
\end{displaymath} ( .30)


\begin{displaymath}
\nabla^2 \bullet
= \frac{1}{h_1 h_2 h_3}
\left[ \DP{}{\...
...eft( \frac{h_1 h_2}{h_3} \DP{\bullet}{\xi_3} \right)
\right],
\end{displaymath} ( .31)


\begin{displaymath}
\Drot \Dvect{A}
= \left( \frac{1}{h_2 h_3}
\left[ \DP{(h_...
...DP{(h_2 A_2)}{\xi_1} - \DP{(h_1 A_1)}{\xi_2} \right]
\right),
\end{displaymath} ( .32)


\begin{displaymath}
\DD{\bullet}{t}
= \DP{\bullet}{t}
+ \frac{v_1}{h_1} \DP{...
...2} \DP{\bullet}{\xi_2}
+ \frac{v_3}{h_3} \DP{\bullet}{\xi_3},
\end{displaymath} ( .33)


\begin{displaymath}
\DD{\Dvect{v}}{t}
= \sum^3_{k=1} \Dvect{e}_k
\left[ \DP{v...
...{v_k}{h_k} \frac{1}{h_j} \DP{h_k}{\xi_j} \right) v_j
\right].
\end{displaymath} ( .34)

.4.2 $B5e:BI87O$K$*$1$kHyJ,(B

$B=ENO2CB.EY(B $\Dvect{g}$ $B$,CO5eCf?4$r8~$$$F$$$k$H$_$J$7$F(B, $BJ}Dx<07O$r5e(B $B:BI8(B $(\xi_1, \xi_2, \xi_3) = (\lambda, \varphi, r)$ $B$KJQ49$9$k(B. $B2sE>(B $B7O$K8GDj$7$?D>8rD>@~:BI8(B $(x_1, x_2, x_3)$ $B$H$N4X78$O(B

$\displaystyle x_1$ $\textstyle =$ $\displaystyle r \cos \varphi \cos \lambda,$ (.35)
$\displaystyle x_2$ $\textstyle =$ $\displaystyle r \cos \varphi \sin \lambda,$ (.36)
$\displaystyle x_3$ $\textstyle =$ $\displaystyle r \sin \varphi,$ (.37)

$B$G$"$k(B. $B$3$3$G(B, $\lambda$ $B$O0^EY(B, $\varphi$ $B$O7PEY(B, $r$ $B$O1tD>:BI8$G$"(B $B$k(B. $B$^$?(B, $B4pDl%Y%/%H%k$r(B $(\Dvect{e}_{\lambda}, \Dvect{e}_{\varphi},
\Dvect{e}_{r})$, $BB.EY%Y%/%H%k$r(B $(u, v, w)$ $B$GI=$9(B.

$B3FJ}8~$N5,LO0x;R(B( scale factor )$B$O(B

\begin{displaymath}
h_\lambda = r \cos \varphi, \ \ h_\varphi = r, \ \ h_r = 1.
\end{displaymath} ( .38)

$B$7$?$,$C$F(B, $B%9%+%i!<(B $\bullet$ $B$*$h$S%Y%/%H%k(B $\Dvect{A}=(A_{\lambda}, A_{\varphi}, A_r)$ $B$K4X$9$kHyJ,I=8=$O
\begin{displaymath}
\Dgrad \bullet
= \Dvect{e}_{\lambda} \frac{1}{r \cos \varp...
...c{1}{r} \DP{\bullet}{\varphi}
+ \Dvect{e}_r \DP{\bullet}{r},
\end{displaymath} ( .39)


\begin{displaymath}
\Ddiv \Dvect{A}
= \frac{1}{r^2 \cos \varphi}
\left[ r \...
...hi A_{\varphi})
+ \cos \varphi \DP{}{r} ( r^2 A_r )
\right],
\end{displaymath} ( .40)


\begin{displaymath}
\nabla^2 \bullet
= \frac{1}{r^2 \cos \varphi}
\left[ \D...
...}{r} \left( r^2 \cos \varphi \DP{\bullet}{r} \right)
\right],
\end{displaymath} ( .41)


$\displaystyle \Drot \Dvect{A}$ $\textstyle =$ $\displaystyle \Dvect{e}_{\lambda} \frac{1}{r}
\left[ \DP{A_r}{\varphi} - \DP{}{r}(r A_{\varphi})
\right]$  
    $\displaystyle + \Dvect{e}_{\varphi} \frac{1}{r \cos \varphi}
\left[ \DP{}{r} (r \cos \varphi A_{\lambda}) -
\DP{A_r}{\lambda} \right]$  
    $\displaystyle + \Dvect{e}_r \frac{1}{r \cos \varphi}
\left[ \DP{A_{\varphi}}{\lambda} - \DP{}{\varphi} (\cos
\varphi A_{\lambda}) \right],$ (.42)


\begin{displaymath}
\DD{\bullet}{t}
= \DP{\bullet}{t} + \frac{u}{r \cos \varp...
...bda}
+ \frac{v}{r} \DP{\bullet}{\varphi} + w \DP{\bullet}{r},
\end{displaymath} ( .43)


$\displaystyle \DD{\Dvect{A}}{t}$ $\textstyle =$ $\displaystyle \Dvect{e}_{\lambda} \left[
\DP{A_{\lambda}}{t} + \frac{u}{r \cos ...
..._{\lambda}}{r}
+ \frac{u}{r} A_r - \frac{u \tan \varphi}{r} A_{\varphi} \right]$  
    $\displaystyle + \Dvect{e}_{\varphi} \left[
\DP{A_{\varphi}}{t} + \frac{u}{r \co...
..._{\varphi}}{r}
+ \frac{v}{r} A_r + \frac{u \tan \varphi}{r} A_{\lambda} \right]$  
    $\displaystyle + \Dvect{e}_r \left[
\DP{A_r}{t} + \frac{u}{r \cos \varphi} \DP{A...
...i} + w \DP{A_r}{r}
- \frac{v}{r} A_{\varphi} - \frac{u}{r} A_{\lambda} \right].$ (.44)

.4.3 $B5e:BI8$X$NJQ49(B

$B<+E>3QB.EY%Y%/%H%k$NI=8=$O

$\displaystyle 2 \Dvect{\Omega} \times \Dvect{v}$ $\textstyle =$ $\displaystyle 2 \Omega ( \Dvect{e}_{\varphi} \cos \varphi
+ \Dvect{e}_r \sin \varphi)
\times ( u \Dvect{e}_{\lambda} + v \Dvect{e}_{\varphi}
+ w \Dvect{e}_r)$ (.45)
  $\textstyle =$ $\displaystyle ( 2 \Omega \cos \varphi w - 2 \Omega \sin \varphi v) \Dvect{e}_{\...
...Omega \sin \varphi u \Dvect{e}_{\varphi}
- 2 \Omega \cos \varphi u \Dvect{e}_r.$ (.46)

$B$7$?$,$C$F(B, $B1?F0J}Dx<0$O(B
$\displaystyle \DD{u}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{\rho r \cos \varphi } \DP{p}{\lambda}
+ 2 \Omega v \si...
...\Omega w \cos \varphi
+ \frac{u v}{r} \tan \varphi
- \frac{u w}{r}
+ F_\lambda,$ (.47)
$\displaystyle \DD{v}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{\rho r} \DP{p}{\varphi}
- 2 \Omega u \sin \varphi
- \frac{u^2}{r} \tan \varphi
- \frac{v w}{r}
+ F_\varphi,$ (.48)
$\displaystyle \DD{w}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{\rho} \DP{p}{r} -g
+ 2 \Omega u \cos \varphi
+ \frac{u^2}{r}
+ \frac{v^2}{r}
+ F_r.$ (.49)

$BO"B3$N<0$O(B
\begin{displaymath}
\DD{\rho}{t}
+ \frac{1}{r \cos \varphi} \DP{}{\lambda} ( ...
...i} ( \cos \varphi v)
+ \frac{1}{r^2} \DP{}{r} ( r^2 w )
= 0.
\end{displaymath} ( .50)

$BG.NO3X$N<0$O(B
\begin{displaymath}
\DD{}{t} T = \frac{1}{c_p^d \rho} \DD{p}{t} + \frac{Q^*}{c_p^d}.
\end{displaymath} ( .51)

$B>uBVJ}Dx<0$O(B
\begin{displaymath}
p = \rho R T.
\end{displaymath} ( .52)

$B?e>x5$$N<0$O(B
\begin{displaymath}
\DD{q}{t} = S_q.
\end{displaymath} ( .53)

$B$3$3$G(B,
\begin{displaymath}
\DD{}{t}
= \DP{}{t}
+ \frac{u}{r \cos \phi} \DP{}{\lambda}
+ \frac{v}{r} \DP{}{\phi}
+ w \DP{}{r},
\end{displaymath} ( .54)

$B$G$"$k(B. .7% latex2html id marker 9253
\setcounter{footnote}{7}\fnsymbol{footnote} .77 .7% latex2html id marker 9254
\setcounter{footnote}{7}\fnsymbol{footnote} .77 .7% latex2html id marker 9255
\setcounter{footnote}{7}\fnsymbol{footnote} .77

.5 $z$-$B:BI8%W%j%_%F%#%VJ}Dx<0(B

.5.1 $B@ENO3XJ?9U6a;w(B

$B1tD>J}8~$N1?F0J}Dx<0$KBP$7(B, $B@ENO3XJ?9U6a;w$r9T$J$&(B.

\begin{displaymath}
0 = - \frac{1}{\rho} \DP{p}{z} - g.
\end{displaymath} ( .55)

$B$3$N$H$-(B, $B1?F0%(%M%k%.!<$NJ]B8B'$r9MN8$7$F(B, $B?eJ?J}8~$N1?F0J}Dx<0$KBP$7(B $B$F$b6a;w$r;\$9(B. $B1?F0%(%M%k%.!<$N<0$O(B, $B1?F0J}Dx<[email protected],$K$=$l$>$l(B $u,
v, w$ $B$r$+$1$k$3$H$GF@$i$l$k(B.
$\displaystyle \DD{}{t} \left( \frac{1}{2} \Dvect{v}^2 \right)$ $\textstyle =$ $\displaystyle u \DD{u}{t} + v \DD{v}{t} + w \DD{w}{t}$  
  $\textstyle =$ $\displaystyle u \biggl\{
- \frac{1}{\rho r \cos \varphi } \DP{p}{\lambda}
+ \un...
... \tan \varphi }_{(3)}
- \underbrace{ \frac{u w}{r} }_{(4)}
+ F_\lambda \biggl\}$  
    $\displaystyle + v \biggl\{ - \frac{1}{\rho r} \DP{p}{\varphi}
- \underbrace{ 2 ...
... \tan \varphi }_{(3)}
- \underbrace{ \frac{v w}{r} }_{(5)}
+ F_\varphi \biggl\}$  
    $\displaystyle + w \biggl\{ - \frac{1}{\rho} \DP{p}{r} -g
+ \underbrace{ 2 \Omeg...
...race{ \frac{u^2}{r} }_{(4)}
+ \underbrace{ \frac{v^2}{r} }_{(5)}
+ F_r \biggl\}$  
  $\textstyle =$ $\displaystyle - \frac{1}{\rho} \Dvect{v} \Dgrad{p} - g w
- \Dvect{v} \cdot \Dvect{F}.$ (.56)

$B%3%j%*%j$NNO$*$h$S%a%H%j%C%/9`$OF1$8HV9f$N$b$NF1;N$GBG$A>C$7$"$C$F(B, $B1?(B $BF0%(%M%k%.!<$N;~4VJQ2=$K4sM?$7$J$$$3$H$,$o$+$k(B. .8$B$7$?$,$C$F(B, $B@ENO3XJ?9U6a;w$N:]$K1tD>@.J,$N<0$+$iMn$H$7$?9`(B(2),(4),(5) mail protected],$N<0$N9`$b
$\displaystyle \DD{u}{t}$ $\textstyle =$ $\displaystyle \frac{uv \tan \varphi}{r}
+ fv - \frac{1}{\rho r \cos \varphi} \DP{p}{\lambda}
+ F_{\lambda}$ (.57)
$\displaystyle \DD{v}{t}$ $\textstyle =$ $\displaystyle - \frac{u^2 \tan \varphi}{a}
- fu - \frac{1}{\rho r } \DP{p}{\varphi}
+ F_{\varphi}.$ (.58)

$B$3$3$G(B, $f$ $B$O%3%j%*%j%Q%i%a!<%?(B $f \equiv 2\Omega \sin \varphi$ $B$G$"(B $B$k(B.

.5.2 $BGv$$5e3L6a;w(B

$BBg5$$NAX$,CO5eH>7B$KHf$Y$FGv$$$3$H$r2>Dj$7(B, $BJ}Dx<0Cf$N(B $r$ $B$r(B, $BBeI=E*(B $B$JCO5eH>7B(B $a$ $B$G$*$-$+$($k(B. $B$^$?(B, $r$ $B$K$h$kHyJ,$O$9$Y$F3$H49bEY(B $z$ $B$K$h$kHyJ,$G$*$-$+$($k(B. $B$3$N$H$-4pACJ}Dx<0$O

\begin{displaymath}
\DD{\rho}{t} = - \rho \Ddiv \Dvect{v},
\end{displaymath} ( .59)


\begin{displaymath}
\DD{q}{t} = S_q,
\end{displaymath} ( .60)


\begin{displaymath}
\DD{u}{t} = \frac{uv \tan \varphi}{a}
+ fv - \frac{1}{\rho a \cos \varphi} \DP{p}{\lambda}
+ F_{\lambda},
\end{displaymath} ( .61)


\begin{displaymath}
\DD{v}{t}
= - \frac{u^2 \tan \varphi}{a}
- fu - \frac{1}{\rho a } \DP{p}{\varphi}
+ F_{\varphi},
\end{displaymath} ( .62)


\begin{displaymath}
0 = - \frac{1}{\rho} \DP{p}{z} - g,
\end{displaymath} ( .63)


\begin{displaymath}
\DD{T}{t} = \frac{1}{c_p^d \rho} \DD{p}{t} + \frac{Q^*}{c_p^d},
\end{displaymath} ( .64)


\begin{displaymath}
p = \rho R^d T_v.
\end{displaymath} ( .65)

$B$3$3$G(B,
\begin{displaymath}
\DD{}{t}
= \DP{}{t}
+ \frac{u}{a \cos \varphi} \DP{}{\lambda}
+ \frac{v}{a} \DP{}{\varphi}
+ w \DP{}{z},
\end{displaymath} ( .66)


\begin{displaymath}
\Ddiv{\Dvect{v}}
\equiv \frac{1}{a \cos \varphi} \DP{u}{\l...
...cos \varphi} \DP{v}{\varphi}
( v \cos \varphi )
+ \DP{w}{z}.
\end{displaymath} ( .67)

.8% latex2html id marker 9296
\setcounter{footnote}{8}\fnsymbol{footnote} .88 .8% latex2html id marker 9297
\setcounter{footnote}{8}\fnsymbol{footnote} .88

.6 $\sigma $-$B:BI8%W%j%_%F%#%VJ}Dx<0(B

$B@ENO3XJ?9U$N$b$H$G$O(B, $B5$05(B $p$ $B$O1tD>:BI8(B $z$ $B$KBP$7C1D48:>/$9$k4X?t$G(B $B$"$k(B. $B$=$3$G(B, $B1tD>:BI8$r(B $z$ $B$+$i(B, $BCOI=LL5$05(B $p_s$ $B$G5,3J2=$7$?5$05:B(B $BI8(B,

\begin{displaymath}
\sigma \equiv \frac{p}{p_s},
\end{displaymath} ( .68)

$B$KJQ49$9$k(B. $\sigma $ $B$H(B $z$ $B$N4X78$O(B, $B@ENO3XJ?9U$N<0$rJQ7A$7$FF@$i$l$k(B.
\begin{displaymath}
\DP{\sigma}{z} = - \frac{g \sigma}{R^d T_v}.
\end{displaymath} ( .69)

.6.1 $\sigma $-$B:BI8JQ498x<0(B

$z$- $B:BI8$+$i(B $\sigma $- $B:BI8$X$NJQ498x<0$r<($9(B.

$B1tD>HyJ,(B

$\displaystyle \DP{\bullet}{z}$ $\textstyle =$ $\displaystyle \DP{\sigma}{z} \DP{\bullet}{\sigma}$  
  $\textstyle =$ $\displaystyle - \frac{g \sigma}{R^d T_v} \DP{\bullet}{\sigma}.$ (.70)

$B?eJ?HyJ,(B
$\displaystyle \left( \DP{\bullet}{\lambda} \right)_z$ $\textstyle =$ $\displaystyle \left( \DP{\bullet}{\lambda} \right)_{\sigma}
- \DP{\sigma}{z} \DP{\bullet}{\sigma}
\left( \DP{z}{\lambda} \right)_{\sigma}$  
  $\textstyle =$ $\displaystyle \left( \DP{\bullet}{\lambda} \right)_{\sigma}
+ \frac{g \sigma}{R^d T_v} \DP{\bullet}{\sigma}
\left( \DP{z}{\lambda} \right)_{\sigma},$ (.71)


$\displaystyle \left( \DP{\bullet}{\varphi} \right)_z$ $\textstyle =$ $\displaystyle \left( \DP{\bullet}{\varphi} \right)_{\sigma}
- \DP{\sigma}{z} \DP{\bullet}{\sigma}
\left( \DP{z}{\varphi} \right)_{\sigma}$  
  $\textstyle =$ $\displaystyle \left( \DP{\bullet}{\varphi} \right)_{\sigma}
+ \frac{g \sigma}{R^d T_v} \DP{\bullet}{\sigma}
\left( \DP{z}{\varphi} \right)_{\sigma}.$ (.72)

$B;~4VHyJ,(B
$\displaystyle \left( \DP{\bullet}{t} \right)_z$ $\textstyle =$ $\displaystyle \left( \DP{\bullet}{t} \right)_{\sigma}
- \DP{\sigma}{z} \DP{\bullet}{\sigma}
\left( \DP{z}{t} \right)_{\sigma}$  
  $\textstyle =$ $\displaystyle \left( \DP{\bullet}{t} \right)_{\sigma}
+ \frac{g \sigma}{R^d T_v} \DP{\bullet}{\sigma}
\left( \DP{z}{t} \right)_{\sigma}.$ (.73)

$B%i%0%i%s%8%eHyJ,$O$3$l$i$rMQ$$$F(B,
$\displaystyle \left( \DD{\bullet}{t} \right)_z$ $\textstyle =$ $\displaystyle \left( \DP{\bullet}{t} \right)_z
+ \frac{u}{a \cos \varphi} \left...
...{a} \left( \DP{\bullet}{\varphi} \right)_z
+ w \left( \DP{\bullet}{z} \right)_z$  
  $\textstyle =$ $\displaystyle \left( \DP{\bullet}{t} \right)_{\sigma}
+ \frac{u}{a \cos \varphi...
...{\bullet}{\varphi} \right)_{\sigma}
+ w \left( \DP{\bullet}{z} \right)_{\sigma}$  
    $\displaystyle + \frac{g \sigma}{R^d T_v} \left\{
\left( \DP{z}{t} \right)_{\sig...
...{v}{a} \left( \DP{z}{\varphi} \right)_{\sigma}
-w \right\} \DP{\bullet}{\sigma}$  
  $\textstyle =$ $\displaystyle \left( \DD{\bullet}{t} \right)_{\sigma}.$ (.74)

$B$3$3$G(B, $\sigma $-$B:BI81tD>B.EY(B $\dot{\sigma}$ $B$rDj5A$9$k(B.
\begin{displaymath}
\dot{\sigma} \equiv
\frac{g \sigma}{R^d T_v} \left\{
\le...
...ac{v}{a} \left( \DP{z}{\varphi} \right)_{\sigma}
-w \right\}.
\end{displaymath} ( .75)

.6.2 $\sigma $-$B:BI8%W%j%_%F%#%VJ}Dx<07O(B

.6.2.1 $B@ENO3XJ?9U$N<0(B

$B<0(B (A.69) $B$r=ENO%]%F%s%7%c%k(B $\Phi=gz$ $B$rMQ$$$F=q$1$P(B,

\begin{displaymath}
\DP{\Phi}{\sigma}=-\frac{R^d T_v}{\sigma}.
\end{displaymath} ( .76)

.6.2.2 $B1?F0J}Dx<0(B

$B?eJ?$N05NO8{G[$O(B, $B<0(B(A.71)$B$*$h$S<0(B(A.72) $B$r(B $p$ $B$KBP$7$FE,MQ$7(B, $B<0(B(A.68) $B$rMQ$$$l$P

$\displaystyle \frac{1}{\rho} \left( \DP{p}{\lambda} \right)_z$ $\textstyle =$ $\displaystyle \frac{1}{\rho} \left\{ \DP[][\sigma]{p}{\lambda}
+ \frac{g \sigma}{R^d T_v} \DP{p}{\sigma} \DP[][\sigma]{z}{\lambda}
\right\}$  
  $\textstyle =$ $\displaystyle \frac{R^d T_v}{p_s} \DP{p_s}{\lambda}
+ \frac{R^d T_v}{p} \frac{g \sigma}{R^d T_v} p_s \DP[][\sigma]{z}{\lambda}$  
  $\textstyle =$ $\displaystyle R^d T_v \DP[][\sigma]{\pi}{\lambda} + \DP{\Phi}{\lambda},$ (.77)


\begin{displaymath}
\frac{1}{\rho} \left( \DP{p}{\varphi} \right)_z
= R^d T_v \DP[][\sigma]{\pi}{\varphi} + \DP{\Phi}{\varphi}.
\end{displaymath} ( .78)

$B$3$3$G(B $\pi \equiv \ln p_s$ $B$G$"$k(B. $B$7$?$,$C$F(B, $B1?F0J}Dx<[email protected],$O(B,
\begin{displaymath}
\DD{u}{t} -f v - \frac{uv}{a} \tan \varphi
= - \frac{1}{a ...
...ac{R^d T_v}{a \cos \varphi} \DP{\pi}{\lambda}
+ F_{\lambda},
\end{displaymath} ( .79)


\begin{displaymath}
\DD{v}{t} + fu + \frac{u^2}{a} \tan \varphi
= - \frac{1}{a...
...arphi}
- \frac{R^d T_v}{a} \DP{\pi}{\varphi}
+ F_{\varphi}.
\end{displaymath} ( .80)

.6.2.3 $BO"B3$N<0(B

$BB.EY$NH/;6$O(B,

$\displaystyle \left( \Ddiv \Dvect{v} \right)_z$ $\textstyle =$ $\displaystyle \frac{1}{a \cos \varphi}
\left[ \DP[][\sigma]{u}{\lambda}
+ \frac{g \sigma}{R^d T_v} \DP{u}{\sigma}
\DP[][\sigma]{z}{\lambda} \right]$  
    $\displaystyle + \frac{1}{a \cos \varphi}
\left[ \left( \DP{}{\varphi} (v \cos \...
...ght]
- \frac{g \sigma}{R^d T_v} \DP{}{\sigma} \left( \DD{z}{t}
\right)_{\sigma}$  
  $\textstyle =$ $\displaystyle \frac{1}{a \cos \varphi}
\left[ \DP[][\sigma]{u}{\lambda}
+ \frac{g \sigma}{R^d T_v} \DP{u}{\sigma}
\DP[][\sigma]{z}{\lambda} \right]$  
    $\displaystyle + \frac{1}{a \cos \varphi}
\left[ \left( \DP{}{\varphi} (v \cos \...
...igma}{R^d T_v}\DP{}{\sigma} ( v \cos \varphi)
\DP[][\sigma]{z}{\lambda} \right]$  
    $\displaystyle - \frac{g \sigma}{R^d T_v} \DP{}{\sigma} \left[
\DP[][\sigma]{z}{...
...}
+ \frac{v}{a} \DP[][\sigma]{z}{\varphi}
+ \dot{\sigma} \DP{z}{\sigma}
\right]$  
  $\textstyle =$ $\displaystyle \frac{1}{a \cos \varphi} \DP[][\sigma]{u}{\lambda}
+ \frac{1}{a \...
...t( \DP{}{\varphi} (v \cos
\varphi) \right)_{\sigma}
+ \DP{\dot{\sigma}}{\sigma}$  
    $\displaystyle - \frac{g \sigma}{R^d T_v} \left[ \DP{}{\sigma} \DP[][\sigma]{z}{...
...P[][\sigma]{z}{\varphi}
+ \dot{\sigma} \DP{}{\sigma} \DP[][]{z}{\sigma} \right]$  
  $\textstyle =$ $\displaystyle ( \Ddiv{\Dvect{v}_H})_{\sigma} + \DP{\dot{\sigma}}{\sigma}
+ \DP{\sigma}{z}
\left( \DD{}{t} \DP{z}{\sigma} \right)_{\sigma}.$ (.81)

$B$3$3$G(B,
\begin{displaymath}
\Ddiv{\Dvect{v}_H}
\equiv \frac{1}{a \cos \varphi}
\DP[]...
...hi} \left( \DP{}{\varphi} (v \cos
\varphi ) \right)_{\sigma}.
\end{displaymath} ( .82)

$B$f$($K(B, $z$- $B:BI8O"B3$N<0$O
$\displaystyle \frac{1}{\rho} \left( \DD{\rho}{t} \right)_z
+ \left( \Ddiv{\Dvect{v}} \right)_z$ $\textstyle =$ $\displaystyle \frac{1}{\rho} \left( \DD{\rho}{t} \right)_{\sigma}
+ \left( \Ddi...
...igma}}{\sigma}
+ \DP{\sigma}{z} \left( \DD{}{t} \DP{z}{\sigma} \right)_{\sigma}$  
  $\textstyle =$ $\displaystyle \frac{1}{\rho} \left( \DD{\rho}{t} \right)_{\sigma}
+ \left( \Ddi...
...}}{\sigma}
+ \frac{\rho}{p_s} \left( \DD{}{t} \frac{p_s}{\rho} \right)_{\sigma}$  
  $\textstyle =$ $\displaystyle \left( \DD{\ln p_s}{t} \right)_{\sigma}
+ \left( \Ddiv{\Dvect{v}_H} \right)_{\sigma}
+ \DP{\dot{\sigma}}{\sigma}.$ (.83)

$B$7$?$,$C$F(B $\pi \equiv \ln p_s$ $B$rMQ$$$F5-=R$9$l$P
\begin{displaymath}
\DD{\pi}{t}
+ \Ddiv{\Dvect{v}_H}
+ \DP{\dot{\sigma}}{\sigma}
= 0.
\end{displaymath} ( .84)

.6.2.4 $BG.NO3X$N<0(B

$B<0(B ( A.64 ) $B$N1&JUBh(B1$B9`$O

$\displaystyle \frac{1}{c_p^d \rho} \DD{p}{t}$ $\textstyle =$ $\displaystyle \frac{1}{c_p^d \rho} \left\{ \DP{p}{t}
+ \Dvect{v}_H \cdot \nabla_{\sigma} p
+ \dot{\sigma} \DP{p}{\sigma} \right\}$  
  $\textstyle =$ $\displaystyle \frac{1}{c_p^d \rho} \left\{ \sigma \DP{p_s}{t}
+ \sigma \Dvect{v}_H \cdot \nabla_{\sigma} p_s
+ \dot{\sigma} p_s \right\}$  
  $\textstyle =$ $\displaystyle \frac{R^d T_v}{c_p^d} \left\{ \DP{\pi}{t}
+ \Dvect{v}_H \cdot \nabla_{\sigma} \pi
+ \frac{\dot{\sigma}}{\sigma} \right\}.$ (.85)

$B$3$3$G(B,
\begin{displaymath}
\Dvect{v}_H \cdot \nabla_{\sigma}
= \frac{u}{a \cos \varphi} \DP{}{\lambda}
+ \frac{v}{a} \DP{}{\varphi}.
\end{displaymath} ( .86)

$B$7$?$,$C$F(B, $BG.NO3X$N<0$O$D$.$N$h$&$K$J$k(B.
\begin{displaymath}
\DD{T}{t}
= \frac{R^d T_v}{c_p^d}
\left\{ \DP{\pi}{t}
...
... + \frac{\dot{\sigma}}{\sigma} \right\}
+ \frac{Q^*}{c_p^d}.
\end{displaymath} ( .87)

.6.3 $B6-3&>r7o(B

$B$3$3$G(B, $\sigma $ $B:BI8$K$*$1$k6-3&>r7o$K$D$$$F=R$Y$k(B.

.6.3.1 $BCOI=LL9bEY(B


\begin{displaymath}
\Phi = \Phi_s (\lambda, \varphi) \ \ \ \ {\rm at} \ \ \sigma=1.
\end{displaymath} ( .88)

$B$9$J$o$A(B, $\Phi_s$ $B$OI=LLCO7A$rI=$9(B. $B$3$N6-3&>r7o$rMQ$$$F(B, $B@ENO3XJ?9U(B $B$N<0$r1tD>@QJ,$9$k$3$H$G(B, $BG$0U$N(B $\sigma $ $B$K$*$1$k9bEY(B $\Phi$ $B$r5a$a$k(B $B$3$H$,$G$-$k(B.

.6.3.2 $\sigma $ $B:BI81tD>B.EY(B


\begin{displaymath}
\dot{\sigma} = 0 \ \ \ at \ \ \sigma = 0 , \ 1 .
\end{displaymath} ( .89)

.6.3.3 $B?eJ?N.$*$h$SG.NO3XJQ?t(B

$B$3$3$G$O=R$Y$J$$(B.

.6.4 $B798~J}Dx<0(B

$BO"B3$N<0$r1tD>J}8~$K(B $\sigma=0$ $B$+$i(B $\sigma=1$ $B$^$G@QJ,$7(B, $\dot{\sigma}$ $B$K4X$9$k6-3&>r7o$rMQ$$$l$P(B, $B798~J}Dx<0$H$h$P$l$k(B $\pi$ $B$N;~4VJQ2=$K4X$9$k<0$,F@$i$l$k(B.

\begin{displaymath}
\frac{\partial \pi}{\partial t}
= - \int_{0}^{1} \Dvect{v}...
...\cdot \nabla_{\sigma} \pi d \sigma
- \int_{0}^{1} D d \sigma.
\end{displaymath} ( .90)

$B$3$N<0$rMQ$$$l$P(B, $\dot{\sigma}$ $B$N>pJs$,$J$/$F$bCOI=LL5$05$N;~4VJQ2=(B $B$r5a$a$k$3$H$,$G$-$k(B. $B$J$*(B, $B$3$3$G$O8e$N$3$H$r9M$($F(B $\Ddiv{\Dvect{v}_H}$ $B$r(B $D$ $B$HI=8=$7$F$$$k(B. $D$ $B$K$D$$$F$O $B1tD>B.EY(B$\dot{\sigma}$$B$O(B, $BO"B3$N<0$r1tD>J}8~$K(B $\sigma=0$ $B$+$i(B $\sigma=\sigma$ $B$^$G@QJ,$9$k$3$H$G?GCGE*$KF@$i$l$k(B.
\begin{displaymath}
\dot{\sigma}
= - \sigma
\frac{\partial \pi}{\partial t}...
...}^{\sigma}
\Dvect{v}_{H} \cdot \nabla_{\sigma} \pi d \sigma.
\end{displaymath} ( .91)

.8% latex2html id marker 9430
\setcounter{footnote}{8}\fnsymbol{footnote} .88 .8% latex2html id marker 9431
\setcounter{footnote}{8}\fnsymbol{footnote} .88

.7 $B%b%G%k;YG[J}Dx<0(B

.7.1 $B12EYJ}Dx<0$HH/;6J}Dx<0(B

$B12EY(B:

\begin{displaymath}
\zeta \equiv \frac{1}{a \cos \varphi} \DP{v}{\lambda}
- \frac{1}{a \cos \varphi} \DP{}{\varphi} ( u \cos \varphi).
\end{displaymath} ( .92)

$BH/;6(B:
\begin{displaymath}
D \equiv \frac{1}{a \cos \varphi} \DP{u}{\lambda}
+ \frac{1}{a \cos \varphi} \DP{}{\varphi} ( v \cos \varphi).
\end{displaymath} ( .93)

.7.1.1 $B12EYJ}Dx<0(B

$B1?F0J}Dx<0$N(B $u$ $B$N<0$K(B $\frac{1}{a \cos \varphi} \DP{}{\varphi} \cos
\varphi$ $B$r(B $B:nMQ$7(B, $v$ $B$N<0$K(B $\frac{1}{a \cos \varphi} \DP{}{\lambda}$ $B$r(B $B:nMQ$7:9$r$H$C$FJQ7A$9$l$P

$\displaystyle \DP{\zeta}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\varphi}
( \zeta v \cos \varphi )
- \frac{1}{a \cos \varphi} \DP{}{\lambda}
( \zeta u )$  
    $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\lambda}
\left[ \dot{\sigma} \DP{v}{\sigma}
+ \frac{R^d T_v}{a p_s} \DP{p_s}{\varphi}
- F_{\varphi} + f u \right]$  
    $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\varphi}
\left[ - \cos \varphi \...
...a p_s} \DP{p_s}{\lambda}
+ F_{\lambda} \cos \varphi + f v \cos \varphi \right].$ (.94)

.7.1.2 $BH/;6J}Dx<0(B

$B1?F0J}Dx<0$N(B $u$ $B$N<0$K(B $\frac{1}{a \cos \varphi} \DP{}{\lambda}$ $B$r:n(B $BMQ$7(B, $v$ $B$N<0$K(B $\frac{1}{a \cos \varphi} \DP{}{\varphi} \cos
\varphi$ $B$r:nMQ$7OB$r$H$C$FJQ7A$9$k$H

$\displaystyle \DP{D}{t}$ $\textstyle =$ $\displaystyle \frac{1}{a \cos \varphi} \DP{}{\lambda}
( \zeta v )
- \frac{1}{a \cos \varphi} \DP{}{\varphi}
( \zeta u \cos \varphi)$  
    $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\lambda}
\left[ \dot{\sigma} \DP...
...frac{R^d T_v}{a \cos \varphi p_s} \DP{p_s}{\lambda}
- F_{\lambda} - f v \right]$  
    $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\varphi}
\left[ \cos \varphi \do...
..._s}{\varphi} \cos \varphi
- F_{\varphi} \cos \varphi + f u \cos \varphi \right]$  
    $\displaystyle - \nabla^2_{\sigma} ( \Phi + KE).$ (.95)

$B$3$3$G(B,
$\displaystyle \nabla^2_{\sigma}$ $\textstyle =$ $\displaystyle \frac{1}{a^2 \cos^2 \varphi} \DP[2]{}{\lambda}
+ \frac{1}{a^2 \cos \varphi} \DP{}{\varphi} ( \cos
\varphi \DP{}{\varphi} ),$ (.96)
$\displaystyle KE$ $\textstyle =$ $\displaystyle \frac{u^2 + v^2}{2}.$ (.97)

.7.2 $BJQ?tJQ49(B

$B;YG[J}Dx<07O$K$*$1$kJQ?t$r(B, $B%b%G%kFbIt$GMQ$$$F$$$kJQ?t$KJQ49$9$k(B. $B$^$:(B, $\mu \equiv \sin \varphi$ $B$rF3F~$9$k(B. $B$^$?B.EY>l(B $u, v$ $B$O(B $U \equiv u
\cos \phi$, $V \equiv \cos \phi$ $B$KJQ49$9$k(B. .9 $B$3$N$H$-(B, $B?eJ?Iw$N12EY(B $\zeta$ $B$HH/;6(B $D$ $B$O $B$*$h$S(B $D$ $B$HDj5A$9$k(B.

$\displaystyle \zeta$ $\textstyle =$ $\displaystyle \frac{1}{a \cos \varphi} \DP{v}{\lambda}
- \frac{1}{a \cos \varphi} \DP{}{\varphi} ( u \cos \varphi)$  
  $\textstyle =$ $\displaystyle \frac{1}{a \cos^2 \varphi} \DP{v \cos \phi}{\lambda}
- \frac{1}{a \cos \varphi} \DP{}{\varphi} ( u \cos \varphi)$  
  $\textstyle =$ $\displaystyle \frac{1}{a ( 1- \mu^2 )} \DP{V}{\lambda}
- \frac{1}{a} \DP{U}{\mu},$ (.98)


$\displaystyle D$ $\textstyle =$ $\displaystyle \frac{1}{a \cos \varphi} \DP{u}{\lambda}
+ \frac{1}{a \cos \varphi} \DP{}{\varphi} ( v \cos \varphi)$  
  $\textstyle =$ $\displaystyle \frac{1}{a \cos^2 \varphi} \DP{u \cos \phi}{\lambda}
+ \frac{1}{a \cos \varphi} \DP{}{\varphi} ( v \cos \varphi)$  
  $\textstyle =$ $\displaystyle \frac{1}{a ( 1-\mu^2)} \DP{U}{\lambda}
+ \frac{1}{a} \DP{V}{\mu}.$ (.99)

$B?eJ?Iw$K$h$k0\N.$O
$\displaystyle \frac{u}{a \cos\phi}\DP{\bullet}{\lambda}
+ \frac{v}{a} \DP{\bullet}{\phi}$ $\textstyle =$ $\displaystyle \frac{1}{a \cos^2 \phi}
\left\{ \DP{}{\lambda} (u \cos \phi \bull...
...DP{}{\phi} (v \cos \phi \bullet)
- \bullet \DP{}{\phi} ( v \cos \phi ) \right\}$  
  $\textstyle =$ $\displaystyle \frac{1}{a (1-\mu^2)} \DP{}{\lambda} (U\bullet)
-\frac{\bullet}{a...
...\lambda}
+\frac{1}{a \mu} \DP{}{\phi} (V\bullet)
-\frac{\bullet}{a} \DP{V}{\mu}$  
  $\textstyle =$ $\displaystyle \frac{1}{a (1-\mu^2)} \DP{}{\lambda} (U\bullet)
+\frac{1}{a \mu} \DP{}{\phi} (V\bullet)
+\bullet D.$ (.100)

$B?eJ?Iw$K$h$k0\N.$N$b$&$R$H$D$N5-=R$rO"B3$N<0$NJQ49$N$?$a$K<($9(B.
$\displaystyle \frac{u}{a \cos\phi}\DP{\bullet}{\lambda}
+ \frac{v}{a} \DP{\bullet}{\phi}$ $\textstyle =$ $\displaystyle + \frac{u \cos \phi }{a \cos^2 \phi}\DP{\bullet}{\lambda}
+ \frac{v \cos \phi }{a \cos \phi } \DP{\bullet}{\phi}$  
  $\textstyle =$ $\displaystyle + \frac{U}{a (1-\mu^2)} \DP{\bullet}{\lambda}
+ \frac{V}{a} \DP{\bullet}{\mu}$  
  $\textstyle \equiv$ $\displaystyle \Dvect{v}_H \cdot \Dgrad_{\sigma} \bullet.$ (.101)

$B$3$l$i$rMQ$$$F(B, $BJ}Dx<07O$r $BO"B3$N<0(B .10
\begin{displaymath}
\DP{\pi}{t} + \Dvect{v}_H \cdot \Dgrad_{\sigma} \pi
= -\Dgrad_{\sigma} \cdot \Dvect{v}_H - \DP{\dot{\sigma}}{\sigma}.
\end{displaymath} ( .102)

$B12EYJ}Dx<0(B
$\displaystyle \DP{\zeta}{t}$ $\textstyle =$ $\displaystyle -\frac{1}{a}\DP{}{\mu} ( \zeta V )
-\frac{1}{a (1-\mu^2)} \DP{}{\lambda} ( \zeta U )$  
    $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ \dot{\sigma} \DP{V}...
...ac{R^d T_v}{a} (1-\mu^2) \DP{\pi}{\mu}
- F_{\varphi} \cos \varphi + f U \right]$  
    $\displaystyle - \frac{1}{a} \DP{}{\mu}
\left[ - \dot{\sigma} \DP{U}{\sigma}
- \frac{R^d T_v}{a} \DP{\pi}{\lambda}
+ F_{\lambda} \cos \varphi + fV \right].$ (.103)

$BH/;6J}Dx<0(B
$\displaystyle \DP{D}{t}$ $\textstyle =$ $\displaystyle \frac{1}{a (1-\mu^2)} \DP{}{\lambda} ( \zeta V )
- \frac{1}{a} \DP{}{\mu}
( \zeta U )$  
    $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ \dot{\sigma} \DP{U}...
...
+ \frac{R^d T_v}{a} \DP{\pi}{\lambda}
- F_{\lambda} \cos \varphi - f V \right]$  
    $\displaystyle - \frac{1}{a} \DP{}{\mu}
\left[ \dot{\sigma} \DP{V}{\sigma}
+ \frac{R^d T_v}{a} ( 1-\mu^2 ) \DP{\pi}{\mu}
- F_{\varphi} \cos \varphi + f U \right]$  
    $\displaystyle - \nabla^2_{\sigma} ( \Phi + KE).$ (.104)

$BG.NO3X$N<0(B
$\displaystyle \DP{T}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{a(1-\mu^{2})} \DP{UT}{\lambda}
- \frac{1}{a}
\DP{VT}{\mu}
+ T D$  
    $\displaystyle - \dot{\sigma}
\DP{T}{\sigma}
+ \kappa T \left( \DP{\pi}{t}
+ \Dv...
...bla_{\sigma} \pi
+ \frac{ \dot{\sigma} }{ \sigma }
\right)
+ \frac{Q^*}{C_{p}}.$ (.105)

$B?e>x5$$N<0(B
$\displaystyle \DP{q}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{a(1-\mu^{2})}
\DP{Uq}{\lambda}
- \frac{1}{a}
\DP{Vq}{\mu}
+ q D$  
    $\displaystyle - \dot{\sigma} \frac{\partial q }{\partial \sigma}
+ S_{q}.$ (.106)

$B2>29EY(B $T_v$ $B$r $B$N$_$K0MB8$9$k>l(B $\bar{T}_v(\sigma)$ $B$H(B, $B$=$3$+$i$N$:[email protected],(B $T'_v$ $B$K$o$1$F5-=R$9$k(B.

$B12EYJ}Dx<0$G(B $T_v$ $B$r4^$`9`$O

    $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ + \frac{R^d T_v}{a}...
...]
- \frac{1}{a} \DP{}{\mu}
\left[ - \frac{R^d T_v}{a} \DP{\pi}{\lambda} \right]$  
  $\textstyle =$ $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ + \frac{R^d \bar{T}...
...^2)} \DP{}{\lambda}
\left[ + \frac{R^d T'_v}{a} (1-\mu^2) \DP{\pi}{\mu} \right]$  
    $\displaystyle - \frac{1}{a} \DP{}{\mu}
\left[ - \frac{R^d \bar{T}_v}{a} \DP{\pi...
...
- \frac{1}{a} \DP{}{\mu}
\left[ - \frac{R^d T'_v}{a} \DP{\pi}{\lambda} \right]$  
  $\textstyle =$ $\displaystyle - \frac{1}{a} \frac{R^d \bar{T}_v}{a}
\frac{\partial^2 \pi}{\part...
...^2)} \DP{}{\lambda}
\left[ + \frac{R^d T'_v}{a} (1-\mu^2) \DP{\pi}{\mu} \right]$  
    $\displaystyle + \frac{1}{a} \frac{R^d \bar{T}_v}{a}
\frac{\partial^2 \pi}{\part...
...
- \frac{1}{a} \DP{}{\mu}
\left[ - \frac{R^d T'_v}{a} \DP{\pi}{\lambda} \right]$  
  $\textstyle =$ $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ + \frac{R^d T'_v}{a...
...- \frac{1}{a} \DP{}{\mu}
\left[ - \frac{R^d T'_v}{a} \DP{\pi}{\lambda} \right].$ (.107)

$BH/;6J}Dx<0$G(B $T_v$ $B$r4^$`9`$O
    $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ \frac{R^d T_v}{a} \...
...rac{1}{a} \DP{}{\mu}
\left[ \frac{R^d T_v}{a} ( 1-\mu^2 ) \DP{\pi}{\mu} \right]$  
  $\textstyle =$ $\displaystyle - \frac{1}{a (1-\mu^2)} \DP{}{\lambda}
\left[ \frac{R^d \bar{T}_v...
...a (1-\mu^2)} \DP{}{\lambda}
\left[ \frac{R^d T'_v}{a} \DP{\pi}{\lambda} \right]$  
    $\displaystyle - \frac{1}{a} \DP{}{\mu}
\left[ \frac{R^d \bar{T}_v}{a} ( 1-\mu^2...
...ac{1}{a} \DP{}{\mu}
\left[ \frac{R^d T'_v}{a} ( 1-\mu^2 ) \DP{\pi}{\mu} \right]$  
  $\textstyle =$ $\displaystyle - \frac{1}{a^2 (1-\mu^2)} \DP[2]{}{\lambda}
( R^d \bar{T}_v \pi )...
...a (1-\mu^2)} \DP{}{\lambda}
\left[ \frac{R^d T'_v}{a} \DP{\pi}{\lambda} \right]$  
    $\displaystyle - \frac{1}{a^2} \DP{}{\mu}
\left[ (1-\mu^2) \DP{}{\mu} ( R^d \bar...
...ac{1}{a} \DP{}{\mu}
\left[ \frac{R^d T'_v}{a} ( 1-\mu^2 ) \DP{\pi}{\mu} \right]$  
  $\textstyle =$ $\displaystyle - \Dgrad^2_{\sigma} ( R^d \bar{T}_v \pi )
- \frac{1}{a (1-\mu^2)}...
...c{1}{a} \DP{}{\mu}
\left[ \frac{R^d T'_v}{a} ( 1-\mu^2 ) \DP{\pi}{\mu} \right].$ (.108)

$BG.NO3X$N<0$N1&JUBh(B1-3$B9`$O
    $\displaystyle - \frac{1}{a(1-\mu^{2})} \DP{UT}{\lambda}
- \frac{1}{a}
\DP{VT}{\mu}
+ T D$  
  $\textstyle =$ $\displaystyle - \frac{1}{a(1-\mu^{2})} \DP{U \bar{T}}{\lambda}
- \frac{1}{a(1-\...
... \frac{1}{a} \DP{V \bar{T}}{\mu}
- \frac{1}{a} \DP{VT'}{\mu}
+ \bar{T} D
+ T' D$  
  $\textstyle =$ $\displaystyle - \frac{\bar{T}}{a(1-\mu^{2})} \DP{U}{\lambda}
- \frac{1}{a(1-\mu...
...1}{a(1-\mu^{2})} \DP{U}{\lambda}
+ \frac{\bar{1}}{a} \DP{V}{\mu} \right]
+ T' D$  
  $\textstyle =$ $\displaystyle - \frac{1}{a(1-\mu^{2})} \DP{UT'}{\lambda}
- \frac{1}{a} \DP{VT'}{\mu}
+ T' D.$ (.109)

$B0J>e$rMQ$$$FDx<07O$r5-=R$9$l$P $BO"B3$N<0(B

\begin{displaymath}
\DP{\pi}{t} + \Dvect{v}_H \cdot \Dgrad_{\sigma} \pi
= -\Dgrad_{\sigma} \cdot \Dvect{v}_H - \DP{\dot{\sigma}}{\sigma}.
\end{displaymath} ( .110)

$B@E?e05$N<0(B
\begin{displaymath}
\DP{\Phi}{\sigma}=-\frac{R^d T_v}{\sigma}.
\end{displaymath} ( .111)

$B1?F0J}Dx<0(B .11
\begin{displaymath}
\DP{\zeta}{t}
= -\frac{1}{a (1-\mu^2)} \DP{VA}{\lambda}
-\frac{1}{a} \DP{UA}{\mu},
\end{displaymath} ( .112)


\begin{displaymath}
\DP{D}{t}
= \frac{1}{a (1-\mu^2)} \DP{UA}{\lambda}
- \fra...
...A}{\mu}
- \Dgrad^2_{\sigma} ( \Phi + R \bar{T}_v \pi + KE ).
\end{displaymath} ( .113)

$B$3$3$G(B,
$\displaystyle UA$ $\textstyle \equiv$ $\displaystyle ( \zeta + f ) V
- \dot{\sigma} \DP{U}{\sigma}
- \frac{RT'}{a}
\DP{\pi}{\lambda}
+ F_{\lambda} \cos \varphi$ (.114)
$\displaystyle VA$ $\textstyle \equiv$ $\displaystyle - ( \zeta + f ) U
- \dot{\sigma} \DP{V}{\sigma}
- \frac{RT'}{a} ( 1 - \mu^{2} )
\DP{\pi}{\mu}
+ F_{\varphi} \cos \varphi.$ (.115)

$BG.NO3X$N<0(B
$\displaystyle \DP{T}{t}$ $\textstyle =$ $\displaystyle - \frac{1}{a(1-\mu^{2})} \DP{UT'}{\lambda}
- \frac{1}{a} \DP{VT'}{\mu}
+ T' D
- \dot{\sigma}
\DP{T}{\sigma}$  
    $\displaystyle \qquad
+ \kappa T \left( \DP{\pi}{t}
+ \Dvect{v}_{H} \cdot \nabla_{\sigma} \pi
+ \frac{ \dot{\sigma} }{ \sigma }
\right)
+ \frac{Q^*}{C_p^d}.$ (.116)

$B?e>x5$$N<0(B
\begin{displaymath}
\DP{q}{t}
= - \frac{1}{a(1-\mu^{2})}
\DP{Uq}{\lambda}
-...
...
- \dot{\sigma} \frac{\partial q }{\partial \sigma}
+ S_{q}.
\end{displaymath} ( .117)

$B<0(B(A.17) $B$GF3F~$7$?(B $Q^*$ $B$+$iG4@-$K$h$k4sM?(B $c_p \mathcal{D}(\Dvect{v})$ $B$r:F$SJ,N%$7(B, $Q^*=Q+c_p \mathcal{D}(\Dvect{v})$ $B$H$9$k(B. $B0lHL$KG4(B $B@-$O1?F0J}Dx<0$K$*$$$FE,Ev$J%Q%i%a%?%j%x5$$N<0$KBP$7$F$=$l$>$l?eJ?3H;69`(B $\mathcal{D}(\zeta)$, $\mathcal{D}(D)$, $\mathcal{D}(T)$, $\mathcal{D}(q)$ $B$r$D$1$k(B. $B$3$N9`$NIU2C$O, $c_p$ $B$r$=$l$>$l(B $R$, $c_p$ $B$N$h$&$K$"$i$?$a$FCV$-$J$*$;$P(B, $B;Y(B $BG[J}Dx<07O(B (3.1) -- (3.6) $B$rF@$k(B.



...
94/04/13 $B@PEO@5
... $BM}A[5$BN$N>uBVJ}Dx<0$rMQ$$$k(B. .1
$B4%Ag6u5$$H?e>x5$$O(B, $BF1$8B.EY$H29EY$r$b$D$3$H$r0EL[$N$&$A$K2>Dj(B $B$7$F$$$k(B. $B$7$?$,$C$F(B, $B?e>x5$$K4X$9$k1?F0NLJ]B8B'$*$h$SA4%(%M%k%.!uBVJ}Dx<0$r9MN8$9$kI,MW$,$J$$(B.
... $B?e>x5$$N@8@.>CLG$rL5;k$9$l$P(B, .2
$Bx5$<0$G$O@8@.>CLG$r4^$a$F$$$k(B. $B$7$?$,$C$F(B, $BA4Bg5$$Nx5$$N@8@.>CLG$,5/$-$F$bA4
... $B$N0zNO$K$h$k%]%F%s%7%c%k(B .3
$B$3$l$O1s?4NO$r9MN8$7$J$$CO5e$N
... $B$G$"$k$H$7$F$$$k(B. .4
$BF3=P$N2aDx$r<($9(B. $B:8JUBh(B1$B9`$HBh(B2$B9`$O
$\displaystyle v_i \DP{}{t} ( \rho v_i )
+ v_i \DP{}{x_j} ( \rho v_j v_i )$ $\textstyle =$ $\displaystyle \DP{}{t} ( \rho v_i^2 )
+ \DP{}{x_j} ( \rho v_j v_i^2 )
- \rho \D...
...frac{1}{2} v_i^2 \right)
- \rho v_j \DP{}{x_j} \left( \frac{1}{2} v_i^2 \right)$  
  $\textstyle =$ $\displaystyle \DP{}{t} ( \rho v_i^2 )
+ \DP{}{x_j} ( \rho v_j v_i^2 )
- \DP{}{t...
...1}{2} \rho v_i^2 \right)
- \DP{}{x_j} \left( \frac{1}{2} v_i^2 \rho v_j \right)$  
    $\displaystyle + \frac{1}{2} v_i^2 \DP{\rho}{t}
+ \frac{1}{2} v_i^2 \DP{}{x_j} ( \rho v_j )$  
  $\textstyle =$ $\displaystyle \DP{}{t} \left( \frac{1}{2} \rho v_i^2 \right)
+ \DP{}{x_j} ( \fr...
...2 )
+ \frac{1}{2} v_i^2
\left\{ \DP{\rho}{t} + \DP{}{x_j} ( \rho v_j ) \right\}$  
  $\textstyle =$ $\displaystyle \DP{}{t} \left( \frac{1}{2} \rho v_i^2 \right)
+ \DP{}{x_j} ( \frac{1}{2} \rho v_j v_i^2 ).$  

$B$^$?(B, $B:8JUBh(B4$B9`$O
$\displaystyle v_i \rho \DP{\Phi^*}{x_i}$ $\textstyle =$ $\displaystyle \Phi^* \left\{ \DP{\rho}{t} + \DP{}{x_i}(\rho v_i) \right\}
+ \rho \DP{\Phi^*}{t}
+ v_i \rho \DP{\Phi^*}{x_i}$  
  $\textstyle =$ $\displaystyle \DP{}{t} ( \rho \Phi^* )
+ \DP{}{x_i} ( \rho \Phi^* v_i ).$  

... $B$G6a;w$9$k$H(B .5
$B$3$N6a;w$K$O5?Ld$,;D$k(B. $B>uBVJ}Dx<0$K$*$$$F$O(B, $B5$BNDj?t(B $R$ $B$r(B $R^d$ $B$H(B $B$9$k6a;w$O(B($B2>29EY(B $T_v$ $B$rF3F~$9$k$3$H$G(B)$B9T$J$o$J$+$C$?(B. $c_p$ $B$K$D$$(B $B$F$@$16a;w$9$k$N$O6a;w$N%l%Y%k$K0l4S@-$,$J$$$h$&$K;W$o$l$k(B.
... $B$,@.$j$?$D(B. .6
$B$3$l$O<+L@$N$3$H$H$7$?$$(B. $B%9%+%i!<(B $\psi$ $B$N:BI8JQ49$O:BI8JQ49%F%s%=%k(B $B$K0MB8$7$J$$(B($B$GF1$8CM$r$H$k(B)$B$+$i$G$"$k(B. $B$J$*(B, Pedlosky (1987) $B$G$O(B, $B%Y(B $B%/%H%k$NJQ498x<0$r;H$C$F%9%+%i!<$NJQ49$r>ZL@$7$F$$$k(B. $B$H$3$m$,%Y%/%H%k(B $B$NJQ498x<0$G$O%9%+%i!<$NJQ498x<0$r;H$C$F$$$k$N$G(B, $B2?$,$J$s$@$+$o$+$i$J(B $B$$(B.

$B0lJ}(B, $B%Y%/%H%k$N:BI8JQ49$O(B, $B:BI8JQ49%F%s%=%k$H$N@Q$GI=8=$5$l$k(B. $B$7$?$,$C(B $B$F(B, $B:BI8JQ49%F%s%=%k<+BN$,;~4VJQ2=$9$k>l9g(B, $BEvA3%Y%/%H%k$N;~4VHyJ,$O:B(B $BI8JQ49%F%s%=%k$N;~4VHyJ,$N1F6A$r

... $B$3$l$i$N<0$O7A$rJQ$($J$$(B. .7
$B$3$3$G;d$,5$$K$J$C$F$$$k$N$O(B, $B1?F0%(%M%k%.!7O$X(B $B$N0\9T$K$h$C$F7A$rJQ$($k$3$H$G$"$k(B.
... $BF0%(%M%k%.!<$N;~4VJQ2=$K4sM?$7$J$$$3$H$,$o$+$k(B. .8
$B1s?4NO$r=ENO2CB.EY$+$iJ,N%$7$F%(%M%k%.!<$N<0$G9MN8$9$k$H(B, $B$3$N4sM?$O%-%c(B $B%s%;%k$9$k$3$H$J$/;D$k(B.
... $B$KJQ49$9$k(B. .9
$u, v$ $B$N$^$^$G$b12EY$dH/;6$K$9$l$P6K$G$NFC0[@-$r2sHr$G$-$k(B $B$N$G$O$J$$$+(B?
...$BO"B3$N<0(B .10
$BH/;6$O$9$Y$F(B $D$ $B$rMQ$$$FI=8=$9$Y$-$@$m$&(B.
... $B1?F0J}Dx<0(B .11
(2005/4/4 $B@PEO(B) $\zeta$ $B$N<0$N1&JUBh0l9`$NId9f$O@5(B $B$7$$$+(B? $D$ $B$N<0$N1&JUBhFs9`$NId9f$O@5$7$$$+(B?

next up previous
: 10 $BCO5eDj?t(B : DCAPM4 $BBh(B1$BIt(B $B?tM}%b%G%k2=(B : 8 $B1tD>%U%#%k%?!<(B
Yasuhiro MORIKAWA $BJ?@.(B19$BG/(B8$B7n(B3$BF|(B