next up previous
: A. $B;HMQ>e$NCm0U$H%i%$%;%s%95,Dj(B : dcpam5 $B;YG[J}Dx<07O$NF3=P$K4X$9$k;29M;qNA(B : 2. $B:BI87O$N


3. $BNO3X2aDx$N;YG[J}Dx<07O$NF3=P(B

3.1 $B$O$8$a$K(B

dcpam5$B$G$ONO3X7W;;$H$7$F5eLL0^EY7PEY:BI8(B, $B1tD>(B $ \sigma $ $B:BI8$N(B $B%W%j%_%F%#%VJ}Dx<07O$r2r$$$F$$$k(B. $B0J2<$G$O(B, $B$^$:A[Dj$9$kBg5$$K$D$$$F(B $B$N2>Dj$r9T$C$?8e(B, $BA4x5$NL$N<0(B, $B1?F0J}Dx<0(B (3 mail protected],(B), $BG.NO3X$N<0$N(B 6 $B$D$NJ}Dx<0$+$i(B, dcpam5$B$G3.8.5$B@a(B $B$r;2>H$N$3$H(B.

3.2 $B@_Dj(B

dcpam5$B$G$OCO5eBg5$$rA[Dj$7(B, $BA4Bg5$$O$H$b$KM}A[5$BN$G$"$k4%Ag6u5$$*$h$S?e>x5$$+$i@.$k:.9gBg5$$H$9$k(B. $B1@?eNL$OL5;k$9$k(B. $B$^$?(B, $B?e>x5$NL$,A4Bg5$$K@j$a$k3d9g$O>.$5$$$H2>Dj(B $B$7(B, $BA4Bg5$$NDj05HfG.$r4%AgBg5$$NCM$G6a;w$9$k(B.

$B?e>x5$NL$NJ]B8$K$D$$$F$O(B, $B6E7k$*$h$S>xH/$K$h$k@8@.>CLG$r9MN8$9$k(B. $B$7$+(B $B$7(B, $B$3$NNL$,A4Bg5$$KM?$($k8z2L$O>.$5$$$H$7(B, $BA4Bg5$$N $B=ENO2CB.EY$OOG@1Cf?4$K8~$$$F$$$k$H2>Dj$9$k(B. $B$^$?(B, $B1?F0$N?eJ?%9%1!<%k$,(B $B1tD>%9%1!<%k$h$j$b$+$J$jBg$-$$1?F0$rA[Dj$7(B, $B@ENO3XJ?9U6a;w$r9T$J$&(B. $B$5(B $B$i$K(B, $B1?F0$OOG@1I=LLIU6a$K8B$i$l$k$3$H$r2>Dj$7$F6a;w$r9T$J$&(B.

3.3 $B4pACJ}Dx<07O$NF3=P(B

$BJ}Dx<07O$O(B 6 $BK\$NM=JsJ}Dx<0$H(B 1 $BK\$N?GCGJ}Dx<0$+$i$J$k(B. $BM=JsJ}Dx<0$O(B, $BA4x5$NL$N<0(B, $B1?F0J}Dx<0(B(3 mail protected],(B), $BG.NO3X$N<0$+$i$J$k(B. $B$3$l$i$O(B, $B$=$l$>$l(B, $BA4x5$NL$NJ]B8B'(B, $BA4uBVJ}Dx<0$rMQ$$$k(B 3.1.

$B!*!*Cm0U(B: $B$3$NIUO?Cf$G$OF3=P$NET9g>e(B, $B4%Ag6u5$$N5$BNDj?t$r(B $ R^d$, $BDj05HfG.$r(B $ C_p^d$, $BA4Bg5$$N5$BNDj?t$r(B $ R$ $B$H$*$/(B. $B$7$+$7(B, $B%b%G%k$N$B;YG[J}Dx<07O$H$=$NN%;62=(B$B!Y(B $B$N!XNO3X2aDx!Y(B $B$G$O(B, $B4%Ag6u5$$N5$BNDj?t$r(B $ R$, $BDj05HfG.$r(B $ C_p$ $B$HI=5-$7$F$$$k(B $B$N$GN10U$$$?$@$-$?$$(B.

3.3.1 $B>uBVJ}Dx<0(B

$B4%Ag6u5$(B, $B?e>x5$$N>uBVJ}Dx<0$O$=$l$>$l(B

$\displaystyle p^d$ $\displaystyle = \rho^{d} R^d T,$ (3.1)
$\displaystyle p^v$ $\displaystyle = \rho^{v} R^v T$ (3.2)

$B$G$"$k(B. $B$3$3$G(B$ p$ $B$O05NO(B, $ \rho$$B$OL)EY(B, $ R$$B$O5$BNDj?t(B, $ T$$B$O29EY$G$"$j(B, $ \bullet^d$, $ \bullet^v$ $B$O$=$l$>$l4%Ag6u5$$*$h$S?e>x5$$K(B $B4X$9$kNL$G$"$k$3$H$r<($9(B. $B$7$?$,$C$F(B, $BA405(B $ p=p^d+p^v$ $B$O(B,

\begin{align*}\begin{split}p & = (\rho^d R^d + \rho^v R^v) T \\ & = \rho R^d ( 1 + \epsilon_v q ) T \end{split}\end{align*} (3.3)

$B$H$J$k(B. $B$3$3$G(B, $ q=\rho_v/\rho$ $B$OHf<>(B, $B$G$"$j(B, $ \epsilon_v \equiv 1/\epsilon -1$, $ \epsilon \equiv R^d/R^v$ $B$G$"$k(B. $B$7$?$,$C$F(B, $BA4Bg5$$N>uBVJ}Dx<0$O(B,

$\displaystyle p = \rho R T.$ (3.4)

$B$?$@$7(B, $ R \equiv R^d ( 1+\epsilon_v q )$ $B$G$"$k(B. $B$"$k$$$O(B, $B2>29EY(B $ T_v \equiv T ( 1 + \epsilon_v q )$ $B$rMQ$$$l$P(B,

$\displaystyle p = \rho R^d T_v$ (3.5)

$B$HI=$5$l$k(B.

3.3.2 $BO"B3$N<0(B

$BA4Bg5$$Nx5$$N@8@.>CLG$rL5;k$9$l$P(B 3.2,

$\displaystyle \DP{\rho}{t} + \DP{}{x_j}( \rho v_j ) = 0.$ (3.6)

$B$3$3$G(B, $ v$$B$OIwB.$G$"$k(B. $B%i%0%i%s%8%e7A<0$G5-=R$9$l$P(B,

$\displaystyle \DD{\rho}{t} + \rho \Ddiv \Dvect{v} = 0.$ (3.7)

3.3.3 $B?e>x5$$N<0(B

$B?e>x5$L)EY(B $ \rho^v$ $B$KBP$9$kCLGNL$r(B $ S$ $B$H$9$l$P(B,

$\displaystyle \DP{\rho^v}{t} + \DP{}{x_j} ( \rho^v v_j ) = S.$ (3.8)

$BHf<>(B $ q=\rho^v/\rho$ $B$K4X$9$k<0$O(B, $B86M}E*$K$O(B([*]) $B$H(B(3.8) $B$+$iF@$k$3$H$,$G$-$k(B. $B$7$+$7(B, $B:#$N>l9g(B, (3.6)$B$G?e>x5$$N@8@.>CLG$rL5;k$7$?$N$G(B, $B@5$7$/$OF@$i$l$J$$(B. $B$=$3$GHf<>$N@8@.>CLG$K4X$9$k9`$r2~$a$F(B $ S_q$ $B$HDj(B $B5A$9$k(B.

$\displaystyle \DD{q}{t} = S_q.$ (3.9)

3.3.4 $B1?F0J}Dx<0(B

$B1?F0NLJ]B8B'$O(B, $B?e>x5$$N@8@.>CLG$K$H$b$J$&1?F0NLJQ2=$rL5;k$9$l$P

$\displaystyle \DP{}{t}(\rho v_i) + \DP{}{x_j}( \rho v_i v_j ) + \DP{p}{x_i} - \DP{\sigma_{ij}}{x_j} + \rho \DP{\Phi^*}{x_i} = {\cal F}_i^{\prime}.$ (3.10)

$B$3$3$G(B, $ \sigma_{ij}$ $B$OG4@-1~NO%F%s%=%k(B, $ \Phi^*$ $B$OOG@1(B $B$N0zNO$K$h$k%]%F%s%7%c%k(B 3.3, $ {\cal F}_i^{\prime}$ $B$O$=$NB>$N30NO9`$G$"$k(B. $B$"$k$$$OO"B3$N<0(B $B$rMQ$$$F%i%0%i%s%8%e7A<0$G5-=R$9$k$H(B

$\displaystyle \rho \DD{v_i}{t} + \DP{p}{x_i} - \DP{\tau_{ij}}{x_j} + \rho \DP{\Phi^*}{x_i} = {\cal F}_i^{\prime }$ (3.11)

$B$H$J$k(B. $B$3$3$G(B, $BG4@-9`$H30NO9`$r(B $ {\cal F}_i$ $B$H$*$-(B, $B$5$i$K%Y%/%H%kI=<($9$k(B.

$\displaystyle \rho \DD{\Dvect{v}}{t} + \Dgrad p + \rho \Dgrad \Phi^* = \Dvect{\cal F}.$ (3.12)

3.3.5 $BG.NO3X$N<0(B

$BC10L $ \Dvect{v}^2/2$ $B$HFbIt%((B $B%M%k%.!<(B $ \varepsilon$ $B$*$h$S%]%F%s%7%c%k%(%M%k%.!<(B $ \Phi^*$ $B$NOB$GI=(B $B8=$5$l$k(B. $B$3$N;~4VJQ2=N($N<0$O(B, $B?e>x5$$N@8@.>CLG$K$h$k1F6A$rL5;k$9$l$P(B,

$\displaystyle \DP{}{t} \left[ \rho \left( \frac{1}{2} \Dvect{v}^2 + \varepsilon...
... \right)v_j + p v_j - \sigma_{ij}v_i \right] = \rho Q + {\cal F}_i^{\prime} v_i$ (3.13)

$B$G$"$k(B. $B$3$3$G(B, $ Q$ $B$O30It$+$i$N2CG.N($G$"$k(B. $B0lJ}(B, $B1?F0%(%M%k%.!<$H%](B $B%F%s%7%c%k%(%M%k%.!<$NOB$NJ]B8<0$O(B, $B1?F0NLJ]B8<0(B ([*]) $B$K(B $ v_i$ $B$r$+$1(B, $BO"B3$N<0$rMQ$$$FJQ7A$9$k$3$H$GF@$i$l$k(B 3.4.

$\displaystyle \DP{}{t} \left( \frac{1}{2} \rho v_i^2 + \rho \Phi^* \right) + \D...
...ight) = p \DP{v_j}{x_j} - \sigma_{ij} \DP{v_i}{x_j} + {\cal F}_i^{\prime} v_i .$ (3.14)

$B$3$3$G(B, $BJQ7A$N:]$K$O(B $ \DP{\Phi^*}{t}=0$ $B$G$"$k$H$7$F$$$k(B. (3.13)$B$H(B (3.14) $B$H$N:9$r$H$k$H(B, $B

$\displaystyle \DP{}{t} ( \rho \varepsilon ) + \DP{}{x_j} ( \rho \varepsilon v_j ) = - p \DP{v_j}{x_j} + \sigma_{ij} \DP{v_i}{x_j} + \rho Q .$ (3.15)

$BO"B3$N<0$rMQ$$$F%i%0%i%s%8%e7A<0$K=q$-D>$;$P(B

$\displaystyle \rho \DD{\varepsilon}{t} = \frac{p}{\rho} \left( \DD{\rho}{t} \right) + \rho Q.$ (3.16)

$B0J9_$G$O(B, $B30It$+$i$N2CG.$N9`$HG4@-$K$h$k2CG.$N9`$r(B $B$^$H$a$F(B $ Q^*$ $B$H$*$/$3$H$H$9$k(B.

$BFbIt%(%M%k%.!<$r29EY$rMQ$$$FI=8=$9$k$H(B $ \varepsilon = C_v T$ $B$G$"$k(B. $ C_v$$B$ODj05HfG.$G$"$k(B. $B$5$i$K>uBVJ}Dx<0(B (3.4) $B$rMQ$$$F(B(3.16) $B$rJQ7A$9$k(B. $ C_p = C_v + R$ $B$G$"$k$3$H$KCm0U$9$l$P(B

$\displaystyle \DD{C_p T}{t} = \frac{1}{\rho} \DD{p}{t} + Q^*,$ (3.17)

$B$H$J$k(B. $B$3$3$G(B, $ C_p$ $B$r4%Ag6u5$$NDj05HfG.(B $ C_p^d$ ($BDj?t(B) $B$G6a;w$9$k$H(B 3.5, $B

$\displaystyle \DD{T}{t} = \frac{1}{C_p^d \rho} \DD{p}{t} + \frac{Q^*}{C_p^d}.$ (3.18)

3.4 $B2sE>7O$X$NJQ49(B

$B$3$3$G$O(B, $BJ}Dx<07O$r(B $B0lDj$N<+E>3QB.EY(B $ \Dvect{\Omega}$ $B$G2sE>$9$k2sE>7O$KJQ49$9$k(B.

3.4.1 $B%9%+%i!<$NJQ498x<0(B

$B47@-7O$K$*$1$k;~4VHyJ,$rE:;z(B a $B$G(B, $B2sE>7O$rE:;z(B r $B$GI=8=$9$k(B. $B$3$N$H$-(B, $BG$0U$N%9%+%i!<(B $ \psi$ $B$KBP$7$F(B,

$\displaystyle \left( \DD{\psi}{t} \right)_{\rm a} = \left( \DD{\psi}{t} \right)_{\rm r}$ (3.19)

$B$,@.$j$?$D(B 3.6.

3.4.2 $B%Y%/%H%k$NJQ498x<0(B

$BG$0U$N%Y%/%H%k(B $ \Dvect{A}$ $B$KBP$9$k47@-7O$*$h$S2sE>7O$G$NHyJ,$O

$\displaystyle \left( \DD{\Dvect{A}}{t} \right)_{\rm a} = \left( \DD{\Dvect{A}}{t} \right)_{\rm r} + \Dvect{\Omega} \times \Dvect{A}.$ (3.20)

($B>ZL@(B) $BG$0U$N%Y%/%H%k(B $ \Dvect{A}$ $B$r(B, $B47@-7O$G$O(B

  $\displaystyle \Dvect{A} = \Dvect{i} A_x + \Dvect{j} A_y + \Dvect{k} A_z$ (3.21)

$B$HI=$7(B, $B2sE>7O$G$O(B

  $\displaystyle \Dvect{A} = \Dvect{i}' A'_x + \Dvect{j}' A'_y + \Dvect{k}' A'_z$ (3.22)

$B$HI=$9(B. $B;~4VHyJ,$r$H$k$H(B

$\displaystyle \left( \DD{\Dvect{A}}{t} \right)_{\rm a}$ $\displaystyle = \Dvect{i} \left( \DD{A_x}{t} \right)_{\rm a} + \Dvect{j} \left( \DD{A_y}{t} \right)_{\rm a} + \Dvect{k} \left( \DD{A_z}{t} \right)_{\rm a}$    
  $\displaystyle = \Dvect{i}' \left( \DD{A'_x}{t} \right)_{\rm a} + \Dvect{j}' \le...
...t{j}'}{t} \right)_{\rm a} A'_y + \left( \DD{\Dvect{k}'}{t} \right)_{\rm a} A'_z$    
  $\displaystyle = \Dvect{i}' \left( \DD{A'_x}{t} \right)_{\rm r} + \Dvect{j}' \le...
...+ \Dvect{\Omega} \times \Dvect{j}' A'_y + \Dvect{\Omega} \times \Dvect{k}' A'_z$    
  $\displaystyle = \left( \DD{\Dvect{A}}{t} \right)_{\rm r} + \Dvect{\Omega} \times \Dvect{A}.$ (3.23)

($B>ZL@=*$j(B)

$B$3$3$G(B $ \Dvect{A}=\Dvect{r}$ ( $ \Dvect{r}$ $B$O0LCV%Y%/%H%k(B ) $B$H$*$1$P47(B $B@-7O$G$NB.EY(B $ \Dvect{v}_a \equiv (d\Dvect{r}/dt)_{\rm a}$ ($B$3$l$^$G$N(B $ \Dvect{v}$) $B$O2sE>7O$G$NB.EY(B $ \Dvect{v} \equiv (d\Dvect{r}/dt)_{\rm
r}$ $B$rMQ$$$F

$\displaystyle \Dvect{v}_a = \Dvect{v} + \Dvect{\Omega} \times \Dvect{r}.$ (3.24)

$B$5$i$K(B, (3.20) $B$G(B $ \Dvect{A}=\Dvect{v}_{\rm a}$ $B$H$*(B $B$1$P(B, $BB.EY$N;~4VHyJ,9`$O(B

$\displaystyle \DD{\Dvect{v}_a}{t} = \DD{\Dvect{v}}{t} + 2 \Dvect{\Omega} \times \Dvect{v} + \Dvect{\Omega} \times ( \Dvect{\Omega} \times \Dvect{r} )$ (3.25)

$B$HJQ49$G$-$k(B.

3.4.3 $B2sE>7O$X$NJQ49(B

$BJQ49$N(B(3.25)$B$rMQ$$$F1?F0J}Dx<0$r2sE>7O$G5-=R$9$k(B.

$\displaystyle \DD{\Dvect{v}}{t} = - \frac{1}{\rho} \Dgrad p - 2 \Dvect{\Omega} ...
...a} \times ( \Dvect{\Omega} \times \Dvect{r} ) + \Dgrad \Phi^* + \Dvect{\cal F}.$ (3.26)

$B$3$3$G(B, $B=ENO2CB.EY(B $ \Dvect{g} \equiv \Dgrad \Phi^* - \Dvect{\Omega}
\times ( \Dvect{\Omega} \times \Dvect{v})$ $B$rDj5A$9$l$P(B, $B1?F0J}Dx<0$O(B

$\displaystyle \DD{\Dvect{v}}{t} = - \frac{1}{\rho} \Dgrad p - 2 \Dvect{\Omega} \times \Dvect{v} + \Dvect{g} + \Dvect{\cal F}$ (3.27)

$B$H$J$k(B.

$BO"B3$N<0$*$h$SG.NO3X$N<0$K$*$$$F$O(B, $B%i%0%i%s%8%eHyJ,$,:nMQ$7$F$$$kL)EY(B $B$*$h$S29EY$O:BI8JQ49$KL54X78$J%9%+%i!<$G$"$k$?$a(B, $B$=$N;~4VHyJ,$N7A$OJQ(B $B$o$i$J$$(B. $BO"B3$N<0$O(B, $BB.EY>l$NH/;6$r4^$`$,(B, $B$3$l$O:BI8JQ49$K$h$C$F$bCM(B $B$OJQ$o$i$J$$(B. $B$7$?$,$C$F(B, $B$3$l$i$N<0$O7A$rJQ$($J$$(B.

3.5 $B5e:BI8$X$NJQ49(B

3.5.1 $BD>8r6J@~:BI87O$K$*$1$kHyJ,(B

$B0lHL$ND>8r6J@~:BI8(B $ (\xi_1, \xi_2, \xi_3)$ $B$K$*$$$F(B, $B%9%+%i!<(B $ \bullet$ $B$*$h$S%Y%/%H%k(B $ \Dvect{A}=(A_1, A_2, A_3)$ $B$O $B$O3F<4J}8~$N5,LO0x;R$G$"$j(B, $B3F<4J}8~$N4pDl%Y%/%H%k(B $B$O(B $ \Dvect{e}_i$ $B$H$9$k(B.

$\displaystyle \Dgrad \bullet$ $\displaystyle = \left( \frac{1}{h_1} \DP{\bullet}{\xi_1}, \frac{1}{h_2} \DP{\bullet}{\xi_2}, \frac{1}{h_3} \DP{\bullet}{\xi_3} \right),$ (3.28)
$\displaystyle \Ddiv \Dvect{A}$ $\displaystyle = \frac{1}{h_1 h_2 h_3} \left[ \DP{}{\xi_1} ( h_2 h_3 A_1) + \DP{}{\xi_2} ( h_1 h_3 A_2) + \DP{}{\xi_3} ( h_1 h_2 A_3) \right],$ (3.29)
$\displaystyle \nabla^2 \bullet$ $\displaystyle = \frac{1}{h_1 h_2 h_3} \left[ \DP{}{\xi_1} \left( \frac{h_2 h_3}...
... + \DP{}{\xi_3} \left( \frac{h_1 h_2}{h_3} \DP{\bullet}{\xi_3} \right) \right],$ (3.30)
$\displaystyle \Drot \Dvect{A}$ $\displaystyle = \left( \frac{1}{h_2 h_3} \left[ \DP{(h_3 A_3)}{\xi_2} - \DP{(h_...
...{h_1 h_2} \left[ \DP{(h_2 A_2)}{\xi_1} - \DP{(h_1 A_1)}{\xi_2} \right] \right),$ (3.31)
$\displaystyle \DD{\bullet}{t}$ $\displaystyle = \DP{\bullet}{t} + \frac{v_1}{h_1} \DP{\bullet}{\xi_1} + \frac{v_2}{h_2} \DP{\bullet}{\xi_2} + \frac{v_3}{h_3} \DP{\bullet}{\xi_3},$ (3.32)
$\displaystyle \DD{\Dvect{v}}{t}$ $\displaystyle = \sum^3_{k=1} \Dvect{e}_k \left[ \DP{v_k}{t} + \sum^3_{j=1} \fra...
...h_j}{\xi_k} +\frac{v_k}{h_k} \frac{1}{h_j} \DP{h_k}{\xi_j} \right) v_j \right].$ (3.33)

3.5.2 $B5e:BI87O$K$*$1$kHyJ,(B

$B=ENO2CB.EY(B $ \Dvect{g}$ $B$,OG@1Cf?4$r8~$$$F$$$k$H$_$J$7$F(B, $BJ}Dx<07O$r5e(B $B:BI8(B $ (\xi_1, \xi_2, \xi_3) = (\lambda, \varphi, r)$ $B$KJQ49$9$k(B. $B2sE>(B $B7O$K8GDj$7$?D>8rD>@~:BI8(B $ (x_1, x_2, x_3)$ $B$H$N4X78$O(B

$\displaystyle x_1$ $\displaystyle = r \cos \varphi \cos \lambda,$ (3.34)
$\displaystyle x_2$ $\displaystyle = r \cos \varphi \sin \lambda,$ (3.35)
$\displaystyle x_3$ $\displaystyle = r \sin \varphi$ (3.36)

$B$G$"$k(B. $B$3$3$G(B, $ \lambda$ $B$O0^EY(B, $ \varphi$ $B$O7PEY(B, $ r$ $B$O1tD>:BI8$G$"(B $B$k(B. $B$^$?(B, $B4pDl%Y%/%H%k$r(B $ (\Dvect{e}_{\lambda}, \Dvect{e}_{\varphi},
\Dvect{e}_{r})$, $BB.EY%Y%/%H%k$r(B $ (u, v, w)$ $B$GI=$9(B.

$B3FJ}8~$N5,3J2=0x;R(B (scale factor) $B$O(B

$\displaystyle h_\lambda = r \cos \varphi, \ \ h_\varphi = r, \ \ h_r = 1.$ (3.37)

$B$7$?$,$C$F(B, $B%9%+%i!<(B $ \bullet$ $B$*$h$S%Y%/%H%k(B $ \Dvect{A}=(A_{\lambda}, A_{\varphi}, A_r)$ $B$K4X$9$kHyJ,I=8=$O

$\displaystyle \Dgrad \bullet$ $\displaystyle = \Dvect{e}_{\lambda} \frac{1}{r \cos \varphi} \DP{\bullet}{\lamb...
...t{e}_{\varphi} \frac{1}{r} \DP{\bullet}{\varphi} + \Dvect{e}_r \DP{\bullet}{r},$ (3.38)
$\displaystyle \Ddiv \Dvect{A}$ $\displaystyle = \frac{1}{r^2 \cos \varphi} \left[ r \DP{A_{\lambda}}{\lambda} +...
...arphi} ( \cos \varphi A_{\varphi}) + \cos \varphi \DP{}{r} ( r^2 A_r ) \right],$ (3.39)
$\displaystyle \nabla^2 \bullet$ $\displaystyle = \frac{1}{r^2 \cos \varphi} \left[ \DP{}{\lambda} \left( \frac{1...
...hi} \right) + \DP{}{r} \left( r^2 \cos \varphi \DP{\bullet}{r} \right) \right],$ (3.40)
\begin{align*}\begin{split}\Drot \Dvect{A} & = \quad \Dvect{e}_{\lambda} \frac{1...
...da} - \DP{}{\varphi} (\cos \varphi A_{\lambda}) \right], \end{split}\end{align*} (3.41)
$\displaystyle \DD{\bullet}{t}$ $\displaystyle = \DP{\bullet}{t} + \frac{u}{r \cos \varphi} \DP{\bullet}{\lambda} + \frac{v}{r} \DP{\bullet}{\varphi} + w \DP{\bullet}{r},$ (3.42)
\begin{align*}\begin{split}\DD{\Dvect{A}}{t} & = \quad \Dvect{e}_{\lambda} \left...
...rac{v}{r} A_{\varphi} - \frac{u}{r} A_{\lambda} \right]. \end{split}\end{align*} (3.43)

3.5.3 $B5e:BI8$X$NJQ49(B

$B<+E>3QB.EY%Y%/%H%k$NI=8=$O

\begin{align*}\begin{split}2 \Dvect{\Omega} \times \Dvect{v} & = 2 \Omega ( \Dve...
...vect{e}_{\varphi} - 2 \Omega \cos \varphi u \Dvect{e}_r. \end{split}\end{align*} (3.44)

$B$7$?$,$C$F(B, $B1?F0J}Dx<0$O(B

$\displaystyle \DD{u}{t}$ $\displaystyle = - \frac{1}{\rho r \cos \varphi } \DP{p}{\lambda} + 2 \Omega v \...
...w \cos \varphi + \frac{u v}{r} \tan \varphi - \frac{u w}{r} + {\cal F}_\lambda,$ (3.45)
$\displaystyle \DD{v}{t}$ $\displaystyle = - \frac{1}{\rho r} \DP{p}{\varphi} - 2 \Omega u \sin \varphi - \frac{u^2}{r} \tan \varphi - \frac{v w}{r} + {\cal F}_\varphi,$ (3.46)
$\displaystyle \DD{w}{t}$ $\displaystyle = - \frac{1}{\rho} \DP{p}{r} -g + 2 \Omega u \cos \varphi + \frac{u^2}{r} + \frac{v^2}{r} + {\cal F}_r.$ (3.47)

$BO"B3$N<0$O(B

$\displaystyle \DD{\rho}{t} + \frac{1}{r \cos \varphi} \DP{}{\lambda} ( u) + \fr...
...arphi} \DP{}{\varphi} ( \cos \varphi v) + \frac{1}{r^2} \DP{}{r} ( r^2 w ) = 0.$ (3.48)

$BG.NO3X$N<0$O(B

$\displaystyle \DD{}{t} T = \frac{1}{C_p^d \rho} \DD{p}{t} + \frac{Q^*}{C_p^d}.$ (3.49)

$B>uBVJ}Dx<0$O(B

$\displaystyle p = \rho R^d T_v.$ (3.50)

$B?e>x5$$N<0$O(B

$\displaystyle \DD{q}{t} = S_q.$ (3.51)

$B$3$3$G(B,

$\displaystyle \DD{}{t} = \DP{}{t} + \frac{u}{r \cos \varphi} \DP{}{\lambda} + \frac{v}{r} \DP{}{\varphi} + w \DP{}{r}$ (3.52)

$B$G$"$k(B.

3.6 $ z$-$B:BI8%W%j%_%F%#%VJ}Dx<0(B

3.6.1 $B@ENO3XJ?9U6a;w(B

$B1tD>J}8~$N1?F0J}Dx<0$KBP$7(B, $B0J2<$N$h$&$K@ENO3XJ?9U6a;w$r9T$J$&(B.

$\displaystyle 0 = - \frac{1}{\rho} \DP{p}{z} - g.$ (3.53)

$B$3$N$H$-(B, $B1?F0%(%M%k%.!<$NJ]B8B'$r9MN8$7$F(B, $B?eJ?J}8~$N1?F0J}Dx<0$KBP$7(B $B$F$b6a;w$r;\$9(B. $B1?F0%(%M%k%.!<$N<0$O(B, $B1?F0J}Dx<[email protected],$K$=$l$>$l(B $ u, v, w$ $B$r$+$1$k$3$H$GF@$i$l$k(B.

$\displaystyle \DD{}{t} \left( \frac{1}{2} \Dvect{v}^2 \right)$ $\displaystyle = \quad u \DD{u}{t} + v \DD{v}{t} + w \DD{w}{t}$    
  $\displaystyle = \quad u \biggl\{ - \frac{1}{\rho r \cos \varphi } \DP{p}{\lambd...
...varphi }_{(3)} - \underbrace{ \frac{u w}{r} }_{(4)} + {\cal F}_\lambda \biggl\}$    
  $\displaystyle \quad + v \biggl\{ - \frac{1}{\rho r} \DP{p}{\varphi} - \underbra...
...varphi }_{(3)} - \underbrace{ \frac{v w}{r} }_{(5)} + {\cal F}_\varphi \biggl\}$    
  $\displaystyle \quad + w \biggl\{ - \frac{1}{\rho} \DP{p}{r} -g + \underbrace{ 2...
...frac{u^2}{r} }_{(4)} + \underbrace{ \frac{v^2}{r} }_{(5)} + {\cal F}_r \biggl\}$    
  $\displaystyle = - \frac{1}{\rho} \Dvect{v} \Dgrad{p} - g w - \Dvect{v} \cdot \Dvect{\cal F}.$ (3.54)

$B%3%j%*%j$NNO$*$h$S%a%H%j%C%/9`$OF1$8HV9f$N$b$NF1;N$GBG$A>C$7$"$C$F(B, $B1?(B $BF0%(%M%k%.!<$N;~4VJQ2=$K4sM?$7$J$$$3$H$,$o$+$k(B 3.7. $B$7$?$,$C$F(B, $B@ENO3XJ?9U6a;w$N:]$K1tD>@.J,$N<0$+$iMn$H$7$?9`(B(2),(4),(5) mail protected],$N<0$N9`$b

$\displaystyle \DD{u}{t}$ $\displaystyle = \frac{uv \tan \varphi}{r} + fv - \frac{1}{\rho r \cos \varphi} \DP{p}{\lambda} + {\cal F}_{\lambda} ,$ (3.55)
$\displaystyle \DD{v}{t}$ $\displaystyle = - \frac{u^2 \tan \varphi}{a} - fu - \frac{1}{\rho r } \DP{p}{\varphi} + {\cal F}_{\varphi} .$ (3.56)

$B$3$3$G(B, $ f$ $B$O%3%j%*%j%Q%i%a!<%?(B $ f \equiv 2\Omega \sin \varphi$ $B$G$"$k(B.

3.6.2 $BGv$$5e3L6a;w(B

$BBg5$$NAX$,OG@1H>7B$KHf$Y$FGv$$$3$H$r2>Dj$7(B, $BJ}Dx<0Cf$N(B $ r$ $B$r(B, $BBeI=E*(B $B$JOG@1H>7B(B $ a$ $B$G$*$-$+$($k(B. $B$^$?(B, $ r$ $B$K$h$kHyJ,$O$9$Y$F3$H49bEY(B $ z$ $B$K$h$kHyJ,$G$*$-$+$($k(B. $B$3$N$H$-4pACJ}Dx<0$O

$\displaystyle \DD{\rho}{t}$ $\displaystyle = - \rho \Ddiv \Dvect{v},$ (3.57)
$\displaystyle \DD{q}{t}$ $\displaystyle = S_q,$ (3.58)
$\displaystyle \DD{u}{t}$ $\displaystyle = \frac{uv \tan \varphi}{a} + fv - \frac{1}{\rho a \cos \varphi} \DP{p}{\lambda} + {\cal F}_{\lambda},$ (3.59)
$\displaystyle \DD{v}{t}$ $\displaystyle = - \frac{u^2 \tan \varphi}{a} - fu - \frac{1}{\rho a } \DP{p}{\varphi} + {\cal F}_{\varphi},$ (3.60)
0 $\displaystyle = - \frac{1}{\rho} \DP{p}{z} - g,$ (3.61)
$\displaystyle \DD{T}{t}$ $\displaystyle = \frac{1}{C_p^d \rho} \DD{p}{t} + \frac{Q^*}{C_p^d},$ (3.62)
$\displaystyle p$ $\displaystyle = \rho R^d T_v.$ (3.63)

$B$3$3$G(B,

$\displaystyle \DD{}{t}$ $\displaystyle = \DP{}{t} + \frac{u}{a \cos \varphi} \DP{}{\lambda} + \frac{v}{a} \DP{}{\varphi} + w \DP{}{z},$ (3.64)
$\displaystyle \Ddiv{\Dvect{v}}$ $\displaystyle \equiv \frac{1}{a \cos \varphi} \DP{u}{\lambda} + \frac{1}{a \cos \varphi} \DP{v}{\varphi} ( v \cos \varphi ) + \DP{w}{z}.$ (3.65)

3.7 $ \sigma $-$B:BI8%W%j%_%F%#%VJ}Dx<0(B

$B@ENO3XJ?9U$N$b$H$G$O(B, $B5$05(B $ p$ $B$O1tD>:BI8(B $ z$ $B$KBP$7C1D48:>/$9$k4X?t$G(B $B$"$k(B. $B$=$3$G(B, $B1tD>:BI8$r(B $ z$ $B$+$i(B, $BCOI=LL5$05(B $ p_s$ $B$G5,3J2=$7$?5$05:BI8(B,

$\displaystyle \sigma \equiv \frac{p}{p_s}$ (3.66)

$B$KJQ49$9$k(B. $ \sigma $ $B$H(B $ z$ $B$N4X78$O(B, $B@ENO3XJ?9U$N<0(B (3.5)$B$rJQ7A$7$FF@$i$l$k(B.

$\displaystyle \DP{\sigma}{z} = - \frac{g \sigma}{R^d T_v}.$ (3.67)

3.7.1 $ \sigma $-$B:BI8JQ498x<0(B

$ z$- $B:BI8$+$i(B $ \sigma $- $B:BI8$X$NJQ498x<0$r<($9(B.

$B1tD>HyJ,(B

\begin{align*}\begin{split}\DP{\bullet}{z} & = \DP{\sigma}{z} \DP{\bullet}{\sigma} \\ & = - \frac{g \sigma}{R^d T_v} \DP{\bullet}{\sigma}. \end{split}\end{align*} (3.68)

$B?eJ?HyJ,(B

\begin{align*}\begin{split}\left( \DP{\bullet}{\lambda} \right)_z & = \left( \DP...
...bullet}{\sigma} \left( \DP{z}{\lambda} \right)_{\sigma}, \end{split}\end{align*} (3.69)
     
\begin{align*}\begin{split}\left( \DP{\bullet}{\varphi} \right)_z & = \left( \DP...
...bullet}{\sigma} \left( \DP{z}{\varphi} \right)_{\sigma}. \end{split}\end{align*} (3.70)

$B;~4VHyJ,(B

\begin{align*}\begin{split}\left( \DP{\bullet}{t} \right)_z & = \left( \DP{\bull...
... \DP{\bullet}{\sigma} \left( \DP{z}{t} \right)_{\sigma}. \end{split}\end{align*} (3.71)

$B%i%0%i%s%8%eHyJ,$O$3$l$i$rMQ$$$F(B,

$\displaystyle \left( \DD{\bullet}{t} \right)_z$ $\displaystyle = \left( \DP{\bullet}{t} \right)_z + \frac{u}{a \cos \varphi} \le...
...{a} \left( \DP{\bullet}{\varphi} \right)_z + w \left( \DP{\bullet}{z} \right)_z$    
  $\displaystyle = \left( \DP{\bullet}{t} \right)_{\sigma} + \frac{u}{a \cos \varp...
...a} \right)_{\sigma} + \frac{v}{a} \left( \DP{\bullet}{\varphi} \right)_{\sigma}$    
  $\displaystyle \quad + \frac{g \sigma}{R^d T_v} \left\{ \left( \DP{z}{t} \right)...
...{v}{a} \left( \DP{z}{\varphi} \right)_{\sigma} -w \right\} \DP{\bullet}{\sigma}$    
  $\displaystyle = \left( \DD{\bullet}{t} \right)_{\sigma}.$ (3.72)

$B$3$3$G(B, $ \sigma $-$B:BI81tD>B.EY(B $ \dot{\sigma}$ $B$rDj5A$9$k(B.

$\displaystyle \dot{\sigma} \equiv \frac{g \sigma}{R^d T_v} \left\{ \left( \DP{z...
...ht)_{\sigma} + \frac{v}{a} \left( \DP{z}{\varphi} \right)_{\sigma} -w \right\}.$ (3.73)

3.7.2 $ \sigma $-$B:BI8%W%j%_%F%#%VJ}Dx<07O(B

3.7.2.1 $B@ENO3XJ?9U$N<0(B

(3.67)$B$r=ENO%]%F%s%7%c%k(B $ \Phi=gz$ $B$rMQ$$$F=q$1$P(B,

$\displaystyle \DP{\Phi}{\sigma}=-\frac{R^d T_v}{\sigma}.$ (3.74)

3.7.2.2 $B1?F0J}Dx<0(B

$B?eJ?$N05NO8{G[$O(B, (3.69)$B$*$h$S(B(3.70) $B$r(B $ p$ $B$KBP$7$FE,MQ$7(B, (3.66) $B$rMQ$$$l$P

$\displaystyle \frac{1}{\rho} \left( \DP{p}{\lambda} \right)_z$ $\displaystyle = \frac{1}{\rho} \left\{ \DP[][\sigma]{p}{\lambda} + \frac{g \sigma}{R^d T_v} \DP{p}{\sigma} \DP[][\sigma]{z}{\lambda} \right\}$    
  $\displaystyle = \frac{R^d T_v}{p_s} \DP{p_s}{\lambda} + \frac{R^d T_v}{p} \frac{g \sigma}{R^d T_v} p_s \DP[][\sigma]{z}{\lambda}$    
  $\displaystyle = R^d T_v \DP[][\sigma]{\pi}{\lambda} + \DP{\Phi}{\lambda},$ (3.75)
$\displaystyle \frac{1}{\rho} \left( \DP{p}{\varphi} \right)_z$ $\displaystyle = R^d T_v \DP[][\sigma]{\pi}{\varphi} + \DP{\Phi}{\varphi}.$ (3.76)

$B$3$3$G(B $ \pi \equiv \ln p_s$ $B$G$"$k(B. $B$7$?$,$C$F(B, $B1?F0J}Dx<[email protected],$O(B,

$\displaystyle \DD{u}{t} -f v - \frac{uv}{a} \tan \varphi$ $\displaystyle = - \frac{1}{a \cos \varphi} \DP{\Phi}{\lambda} - \frac{R^d T_v}{a \cos \varphi} \DP{\pi}{\lambda} + {\cal F}_{\lambda},$ (3.77)
$\displaystyle \DD{v}{t} + fu + \frac{u^2}{a} \tan \varphi$ $\displaystyle = - \frac{1}{a} \DP{\Phi}{\varphi} - \frac{R^d T_v}{a} \DP{\pi}{\varphi} + {\cal F}_{\varphi}.$ (3.78)

3.7.2.3 $BO"B3$N<0(B

$BB.EY$NH/;6$O(B,

$\displaystyle \left( \Ddiv \Dvect{v} \right)_z$ $\displaystyle = \frac{1}{a \cos \varphi} \left[ \DP[][\sigma]{u}{\lambda} + \frac{g \sigma}{R^d T_v} \DP{u}{\sigma} \DP[][\sigma]{z}{\lambda} \right]$    
  $\displaystyle \quad + \frac{1}{a \cos \varphi} \left[ \left( \DP{}{\varphi} (v ...
...ght] - \frac{g \sigma}{R^d T_v} \DP{}{\sigma} \left( \DD{z}{t} \right)_{\sigma}$    
  $\displaystyle = \frac{1}{a \cos \varphi} \left[ \DP[][\sigma]{u}{\lambda} + \frac{g \sigma}{R^d T_v} \DP{u}{\sigma} \DP[][\sigma]{z}{\lambda} \right]$    
  $\displaystyle \quad + \frac{1}{a \cos \varphi} \left[ \left( \DP{}{\varphi} (v ...
...igma}{R^d T_v}\DP{}{\sigma} ( v \cos \varphi) \DP[][\sigma]{z}{\lambda} \right]$    
  $\displaystyle \quad - \frac{g \sigma}{R^d T_v} \DP{}{\sigma} \left[ \DP[][\sigm...
...} + \frac{v}{a} \DP[][\sigma]{z}{\varphi} + \dot{\sigma} \DP{z}{\sigma} \right]$    
  $\displaystyle = \frac{1}{a \cos \varphi} \DP[][\sigma]{u}{\lambda} + \frac{1}{a...
...t( \DP{}{\varphi} (v \cos \varphi) \right)_{\sigma} + \DP{\dot{\sigma}}{\sigma}$    
  $\displaystyle \quad - \frac{g \sigma}{R^d T_v} \left[ \DP{}{\sigma} \DP[][\sigm...
...P[][\sigma]{z}{\varphi} + \dot{\sigma} \DP{}{\sigma} \DP[][]{z}{\sigma} \right]$    
  $\displaystyle = ( \Ddiv{\Dvect{v}_H})_{\sigma} + \DP{\dot{\sigma}}{\sigma} + \DP{\sigma}{z} \left( \DD{}{t} \DP{z}{\sigma} \right)_{\sigma}.$ (3.79)

$B$3$3$G(B,

$\displaystyle \Ddiv{\Dvect{v}_H} \equiv \frac{1}{a \cos \varphi} \DP[][\sigma]{...
...ac{1}{a \cos \varphi} \left( \DP{}{\varphi} (v \cos \varphi ) \right)_{\sigma}.$ (3.80)

$B$f$($K(B, $ z$- $B:BI8O"B3$N<0$O

$\displaystyle \frac{1}{\rho} \left( \DD{\rho}{t} \right)_z + \left( \Ddiv{\Dvect{v}} \right)_z$ $\displaystyle = \frac{1}{\rho} \left( \DD{\rho}{t} \right)_{\sigma} + \left( \D...
...igma}}{\sigma} + \DP{\sigma}{z} \left( \DD{}{t} \DP{z}{\sigma} \right)_{\sigma}$    
  $\displaystyle = \frac{1}{\rho} \left( \DD{\rho}{t} \right)_{\sigma} + \left( \D...
...}}{\sigma} + \frac{\rho}{p_s} \left( \DD{}{t} \frac{p_s}{\rho} \right)_{\sigma}$    
  $\displaystyle = \left( \DD{\ln p_s}{t} \right)_{\sigma} + \left( \Ddiv{\Dvect{v}_H} \right)_{\sigma} + \DP{\dot{\sigma}}{\sigma}.$ (3.81)

$B$7$?$,$C$F(B $ \pi \equiv \ln p_s$ $B$rMQ$$$F5-=R$9$l$P

$\displaystyle \DD{\pi}{t} + \Ddiv{\Dvect{v}_H} + \DP{\dot{\sigma}}{\sigma} = 0.$ (3.82)

3.7.2.4 $BG.NO3X$N<0(B

(3.62)$B$N1&JUBh(B1$B9`$O

$\displaystyle \frac{1}{C_p^d \rho} \DD{p}{t}$ $\displaystyle = \frac{1}{C_p^d \rho} \left\{ \DP{p}{t} + \Dvect{v}_H \cdot \nabla_{\sigma} p + \dot{\sigma} \DP{p}{\sigma} \right\}$    
  $\displaystyle = \frac{1}{C_p^d \rho} \left\{ \sigma \DP{p_s}{t} + \sigma \Dvect{v}_H \cdot \nabla_{\sigma} p_s + \dot{\sigma} p_s \right\}$    
  $\displaystyle = \frac{R^d T_v}{C_p^d} \left\{ \DP{\pi}{t} + \Dvect{v}_H \cdot \nabla_{\sigma} \pi + \frac{\dot{\sigma}}{\sigma} \right\}.$ (3.83)

$B$3$3$G(B,

$\displaystyle \Dvect{v}_H \cdot \nabla_{\sigma} = \frac{u}{a \cos \varphi} \DP{}{\lambda} + \frac{v}{a} \DP{}{\varphi}.$ (3.84)

$B$7$?$,$C$F(B, $BG.NO3X$N<0$O

$\displaystyle \DD{T}{t} = \frac{R^d T_v}{C_p^d} \left\{ \DP{\pi}{t} + \Dvect{v}...
...\nabla_{\sigma} \pi + \frac{\dot{\sigma}}{\sigma} \right\} + \frac{Q^*}{C_p^d}.$ (3.85)

3.7.3 $B6-3&>r7o(B

$B$3$3$G(B, $ \sigma $ $B:BI8$K$*$1$k6-3&>r7o$K$D$$$F=R$Y$k(B.

3.7.3.1 $BCOI=LL9bEY(B


$\displaystyle \Phi = \Phi_s (\lambda, \varphi) \ \ \ \ {\rm at} \ \ \sigma=1.$ (3.86)

$B$9$J$o$A(B, $ \Phi_s$ $B$OI=LLCO7A$rI=$9(B. $B$3$N6-3&>r7o$rMQ$$$F(B, $B@ENO3XJ?9U(B $B$N<0$r1tD>@QJ,$9$k$3$H$G(B, $BG$0U$N(B $ \sigma $ $B$K$*$1$k9bEY(B $ \Phi$ $B$r5a$a$k(B $B$3$H$,$G$-$k(B.

3.7.3.2 $ \sigma $ $B:BI81tD>B.EY(B


$\displaystyle \dot{\sigma} = 0 \ \ \ at \ \ \sigma = 0, \ 1.$ (3.87)

3.7.3.3 $B?eJ?N.$*$h$SG.NO3XJQ?t(B

$B$3$3$G$O=R$Y$J$$(B.

3.7.4 $B798~J}Dx<0(B

$BO"B3$N<0$r1tD>J}8~$K(B $ \sigma=0$ $B$+$i(B $ \sigma=1$ $B$^$G@QJ,$7(B, $ \dot{\sigma}$ $B$K4X$9$k6-3&>r7o$rMQ$$$l$P(B, $B798~J}Dx<0$H$h$P$l$k(B $ \pi$ $B$N;~4VJQ2=$K4X$9$k<0$,F@$i$l$k(B.

$\displaystyle \frac{\partial \pi}{\partial t} = - \int_{0}^{1} \Dvect{v}_{H} \cdot \nabla_{\sigma} \pi d \sigma - \int_{0}^{1} D d \sigma.$ (3.88)

$B$3$N<0$rMQ$$$l$P(B, $ \dot{\sigma}$ $B$N>pJs$,$J$/$F$bCOI=LL5$05$N;~4VJQ2=(B $B$r5a$a$k$3$H$,$G$-$k(B. $B$J$*(B, $B$3$3$G$O8e$N$3$H$r9M$($F(B $ \Ddiv{\Dvect{v}_H}$ $B$r(B $ D$ $B$HI=8=$7$F$$$k(B. $ D$ $B$K$D$$$F$O $B1tD>B.EY(B $ \dot{\sigma}$$B$O(B, $BO"B3$N<0$r1tD>J}8~$K(B $ \sigma=0$ $B$+$i(B $ \sigma=\sigma$ $B$^$G@QJ,$9$k$3$H$G?GCGE*$KF@$i$l$k(B.

$\displaystyle \dot{\sigma} = - \sigma \frac{\partial \pi}{\partial t} - \int_{0...
... d \sigma - \int_{0}^{\sigma} \Dvect{v}_{H} \cdot \nabla_{\sigma} \pi d \sigma.$ (3.89)

3.8 $B%b%G%k;YG[J}Dx<0(B

3.8.1 $B12EYJ}Dx<0(B

$B12EY$NDj5A$r:F7G$9$k(B.

$\displaystyle \zeta \equiv \frac{1}{a \cos \varphi} \DP{v}{\lambda} - \frac{1}{a \cos \varphi} \DP{}{\varphi} ( u \cos \varphi).$ (3.90)

$B1?F0J}Dx<0$N(B $ u$ $B$N<0(B (3.77) $B$K(B $ \frac{1}{a \cos \varphi} \DP{}{\varphi} \cos \varphi$ $B$r(B $B:nMQ$7(B, $ v$ $B$N<0(B (3.78) $B$K(B $ \frac{1}{a \cos \varphi} \DP{}{\lambda}$ $B$r(B $B:nMQ$7(B, $B$3$NN><0$N:9$r$H$C$FJQ7A$9$l$P

$\displaystyle \DP{\zeta}{t}$ $\displaystyle = - \frac{1}{a \cos \varphi} \DP{}{\varphi} ( \zeta v \cos \varphi ) - \frac{1}{a \cos \varphi} \DP{}{\lambda} ( \zeta u )$    
  $\displaystyle \quad - \frac{1}{a \cos \varphi} \DP{}{\lambda} \left[ \dot{\sigm...
...sigma} + \frac{R^d T_v}{a} \DP{\pi}{\varphi} - {\cal F}_{\varphi} + f u \right]$    
  $\displaystyle \quad - \frac{1}{a \cos \varphi} \DP{}{\varphi} \left[ - \cos \va...
...\DP{\pi}{\lambda} + {\cal F}_{\lambda} \cos \varphi + f v \cos \varphi \right].$ (3.91)

($B>ZL@(B) (3.77), (3.78)$B$N$=$l$>$l:8JUBh(B1$B9`$r(B, (3.72), (3.73) $B$rMQ$$$FE83+$9$k$H0J2<$N$h$&$K$J$k(B.

$\displaystyle \DP{u}{t} + \frac{u}{a \cos \varphi} \DP{u}{\lambda} + \frac{v}{a} \DP{u}{\varphi} + \dot{\sigma} \DP{u}{\sigma} - fv - \frac{uv}{a} \tan \varphi$ $\displaystyle = - \frac{1}{a \cos \varphi} \DP{\Phi}{\lambda} - \frac{R^d T_v}{a \cos \varphi} \DP{\pi}{\lambda} + {\cal F}_{\lambda},$ (3.92)
$\displaystyle \DP{v}{t} + \frac{u}{a \cos \varphi} \DP{v}{\lambda} + \frac{v}{a} \DP{v}{\varphi} + \dot{\sigma} \DP{v}{\sigma} + fu + \frac{u^2}{a} \tan \varphi$ $\displaystyle = - \frac{1}{a} \DP{\Phi}{\varphi} - \frac{R^d T_v}{a} \DP{\pi}{\varphi} + {\cal F}_{\varphi}.$ (3.93)

(3.93) $B$K(B $ \DP{}{\lambda}$ $B$r:nMQ$7$?<0$+$i(B (3.92) $B$K(B $ \DP{}{\varphi} \cos \varphi$ $B$r(B $B:nMQ$7$?<0$r0z$/$3$H$G(B,

  $\displaystyle \quad \DP{}{\lambda} \left( \DP{v}{t} \right) + \DP{}{\lambda} \l...
...v}{\varphi} \right) + \DP{}{\lambda} \left( \dot{\sigma} \DP{v}{\sigma} \right)$    
  $\displaystyle \hspace{5em} + \DP{}{\lambda} \left( fu \right) + \DP{}{\lambda} ...
...a} \DP{\pi}{\varphi} \right) - \DP{}{\lambda} \left( {\cal F}_{\varphi} \right)$    
  $\displaystyle - \DP{}{\varphi} \left( \cos \varphi \DP{u}{t} \right) - \DP{}{\v...
...right) - \DP{}{\varphi} \left( \cos \varphi \dot{\sigma} \DP{u}{\sigma} \right)$    
  $\displaystyle \hspace{5em} + \DP{}{\varphi} \left( \cos \varphi fv \right) + \D...
...} \right) + \DP{}{\varphi} \left( \cos \varphi {\cal F}_{\lambda} \right) = 0 .$ (3.94)

(3.94)$B$N(B$ \Phi$$B$K4X$9$k(B $B9`(B ($B:8JUBh(B7$B9`$HBh(B16$B9`(B) $B$OBG$A>C$7$"$C$F>C$($k(B. $B$=$NB>$N9`$O0J2<$N$h$&$K@0M}$5$l$k(B.

$B;~4VHyJ,$N9`(B ($BBh(B1$B9`$HBh(B10$B9`(B):

  $\displaystyle \DP{}{\lambda} \left( \DP{v}{t} \right) - \DP{}{\varphi} \left( \cos \varphi \DP{u}{t} \right)$    
$\displaystyle =$ $\displaystyle \DP{}{t} \left\{ \DP{v}{\lambda} \right\} - \DP{}{t} \left\{ \DP{}{\varphi} \left( u \cos \varphi \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{t} \left\{ \DP{v}{\lambda} - \DP{}{\varphi} \left( u \cos \varphi \right) \right\}$    
$\displaystyle =$ $\displaystyle a \cos \varphi \DP{\zeta}{t}.$ (3.95)

$BB.EY$N(B2$B3,?eJ?HyJ,$N9`$=$N(B1 ($BBh(B3, 12, 15$B9`(B):

  $\displaystyle \DP{}{\lambda} \left( \frac{v}{a} \DP{v}{\varphi} \right) - \DP{}...
...P{u}{\varphi} \right) + \DP{}{\varphi} \left( \frac{uv}{a} \sin \varphi \right)$    
$\displaystyle =$ $\displaystyle \frac{1}{a} \DP{v}{\lambda} \DP{v}{\varphi} + \frac{v}{a} \DP{{}^...
...t( \cos \varphi \DP{u}{\varphi} + u \DP{\cos \varphi}{\varphi} \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{\varphi} \left( \frac{v}{a} \DP{v}{\lambda} \right) - \DP{}...
...rphi} \left\{ \frac{v}{a} \DP{}{\varphi} \left( u \cos \varphi \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{\varphi} \left\{ \left( \frac{1}{a \cos \varphi} \DP{v}{\la...
...i} \DP{}{\varphi} \left( u \cos \varphi \right) \right) v \cos \varphi \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{\varphi} \left( \zeta v \cos \varphi \right) .$ (3.96)

$BB.EY$N(B2$B3,?eJ?HyJ,$N9`$=$N(B2 ($BBh(B2, 6, 11$B9`(B):

  $\displaystyle \DP{}{\lambda} \left( \frac{u}{a \cos \varphi} \DP{v}{\lambda} \r...
...tan \varphi \right) - \DP{}{\varphi} \left( \frac{u}{a} \DP{u}{\lambda} \right)$    
$\displaystyle =$ $\displaystyle \DP{}{\lambda} \left( \frac{u}{a \cos \varphi} \DP{v}{\lambda} \r...
...tan \varphi \right) - \DP{}{\lambda} \left( \frac{u}{a} \DP{u}{\varphi} \right)$    
$\displaystyle =$ $\displaystyle \DP{}{\lambda} \left( \frac{u}{a \cos \varphi} \DP{v}{\lambda} \r...
... \varphi} \left( u \sin \varphi - \cos \varphi \DP{u}{\varphi} \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{\lambda} \left( \frac{u}{a \cos \varphi} \DP{v}{\lambda} \r...
... - u \DP{\cos \varphi}{\varphi} - \cos \varphi \DP{u}{\varphi} \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{\lambda} \left( \frac{u}{a \cos \varphi} \DP{v}{\lambda} \r...
... \frac{u}{a \cos \varphi} \DP{}{\varphi} \left( u \cos \varphi \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{\lambda} \left( \zeta u \right) .$ (3.97)

$B$3$3$G(B, 2 $B9TL\$NBh(B3$B9`$NJQ7A$K$O(B, (3.96)$B$N(B 2, 3 $B9TL\$GBh(B1$B9`$KBP$7$FMQ$$$?JQ7A$rMQ$$$?(B.

(3.94)$B$r(B (3.95), (3.96), (3.97) $B$rMQ$$$F@0M}$7(B, $BN>JU$K(B $ \frac{1}{a \cos \varphi}$ $B$r3]$1$k$3$H$G(B, (3.91)$B$,F@$i$l$k(B.

($B>ZL@=*$j(B)

3.8.2 $BH/;6J}Dx<0(B

$BH/;6$NDj5A$r:F7G$9$k(B.

$\displaystyle D \equiv \frac{1}{a \cos \varphi} \DP{u}{\lambda} + \frac{1}{a \cos \varphi} \DP{}{\varphi} ( v \cos \varphi).$ (3.98)

$B1?F0J}Dx<0$N(B $ u$ $B$N<0(B (3.77) $B$K(B $ \frac{1}{a \cos \varphi} \DP{}{\lambda}$ $B$r:nMQ$7(B, $ v$ $B$N<0(B (3.78) $B$K(B $ \frac{1}{a \cos \varphi} \DP{}{\varphi} \cos \varphi$ $B$r:nMQ$7(B, $BN><0$NOB$r$H$C$FJQ7A$9$k$H

$\displaystyle \DP{D}{t}$ $\displaystyle = \quad \frac{1}{a \cos \varphi} \DP{}{\lambda} ( \zeta v ) - \frac{1}{a \cos \varphi} \DP{}{\varphi} ( \zeta u \cos \varphi)$    
  $\displaystyle \quad - \frac{1}{a \cos \varphi} \DP{}{\lambda} \left[ \dot{\sigm...
...c{R^d T_v}{a \cos \varphi} \DP{\pi}{\lambda} - {\cal F}_{\lambda} - f v \right]$    
  $\displaystyle \quad - \frac{1}{a \cos \varphi} \DP{}{\varphi} \left[ \cos \varp...
... \DP{\pi}{\varphi} - {\cal F}_{\varphi} \cos \varphi + f u \cos \varphi \right]$    
  $\displaystyle \quad - \nabla^2_{\sigma} ( \Phi + KE).$ (3.99)

$B$3$3$G(B,

$\displaystyle \nabla^2_{\sigma}$ $\displaystyle = \frac{1}{a^2 \cos^2 \varphi} \DP[2]{}{\lambda} + \frac{1}{a^2 \cos \varphi} \DP{}{\varphi} \left( \cos \varphi \DP{}{\varphi} \right),$ (3.100)
$\displaystyle KE$ $\displaystyle = \frac{u^2 + v^2}{2}.$ (3.101)

($B>ZL@(B) (3.92) $B$K(B $ \DP{}{\lambda}$ $B$r:nMQ$7$?<0$H(B (3.93) $B$K(B $ \DP{}{\varphi} \cos \varphi$ $B$r:nMQ$7$?<0$H$NOB$r$H$k$3$H$G(B,

  $\displaystyle \quad \DP{}{\lambda} \left( \DP{u}{t} \right) + \DP{}{\lambda} \l...
...u}{\varphi} \right) + \DP{}{\lambda} \left( \dot{\sigma} \DP{u}{\sigma} \right)$    
  $\displaystyle \hspace{5em} - \DP{}{\lambda} \left( fv \right) - \DP{}{\lambda} ...
...i} \DP{\pi}{\lambda} \right) - \DP{}{\lambda} \left( {\cal F}_{\lambda} \right)$    
  $\displaystyle + \DP{}{\varphi} \left( \cos \varphi \DP{v}{t} \right) + \DP{}{\v...
...right) + \DP{}{\varphi} \left( \cos \varphi \dot{\sigma} \DP{v}{\sigma} \right)$    
  $\displaystyle \hspace{5em} + \DP{}{\varphi} \left( \cos \varphi fu \right) + \D...
...ht) + \DP{}{\varphi} \left( \cos \varphi \frac{1}{a} \DP{\Phi}{\varphi} \right)$    
  $\displaystyle \hspace{10em} + \DP{}{\varphi} \left( \cos \varphi \frac{R^d T_v}...
...} \right) - \DP{}{\varphi} \left( \cos \varphi {\cal F}_{\varphi} \right) = 0 .$ (3.102)

$B$3$N<0$O0J2<$N$h$&$K@0M}$5$l$k(B.

$B;~4VHyJ,$N9`(B ($BBh(B1$B9`$HBh(B10$B9`(B):

  $\displaystyle \DP{}{\lambda} \left( \DP{u}{t} \right) + \DP{}{\varphi} \left( \cos \varphi \DP{v}{t} \right)$    
$\displaystyle =$ $\displaystyle \DP{}{t} \left\{ \DP{u}{\lambda} \right\} + \DP{}{t} \left\{ \DP{}{\varphi} \left( v \cos \varphi \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{t} \left\{ \DP{u}{\lambda} + \DP{}{\varphi} \left( v \cos \varphi \right) \right\}$    
$\displaystyle =$ $\displaystyle a \cos \varphi \DP{D}{t}.$ (3.103)

$ \Phi$$B$K4X$9$k9`(B ($BBh(B7$B9`$HBh(B16$B9`(B):

  $\displaystyle \DP{}{\lambda} \left( \frac{1}{a \cos \varphi} \DP{\Phi}{\lambda}...
...ht) + \DP{}{\varphi} \left( \cos \varphi \frac{1}{a} \DP{\Phi}{\varphi} \right)$    
$\displaystyle =$ $\displaystyle a \cos \varphi \left\{ \frac{1}{a^2 \cos^2 \varphi} \DP[2]{}{\lam...
...varphi} \DP{}{\varphi} \left( \cos \varphi \DP{}{\varphi} \right) \right\} \Phi$    
$\displaystyle =$ $\displaystyle a \cos \varphi \ \nabla^2_{\sigma} \Phi .$ (3.104)

$BB.EY$N(B2$B3,?eJ?HyJ,$N9`$=$N(B1 ($BBh(B2, 12$B9`(B):

  $\displaystyle \DP{}{\lambda} \left( \frac{u}{a \cos \varphi} \DP{u}{\lambda} \right) + \DP{}{\varphi} \left( \cos \varphi \frac{v}{a} \DP{v}{\varphi} \right)$    
$\displaystyle =$ $\displaystyle \frac{1}{2 a \cos \varphi} \DP[2]{u^2}{\lambda} + \frac{1}{2a} \DP{}{\varphi} \left( \cos \varphi \DP{v^2}{\varphi} \right)$    
$\displaystyle =$ $\displaystyle \left\{ \frac{1}{a \cos \varphi} \DP[2]{}{\lambda} + \frac{1}{a} ...
...right) - \DP{}{\varphi} \left( \cos \varphi \frac{u}{a} \DP{u}{\varphi} \right)$    
$\displaystyle =$ $\displaystyle a \cos \varphi \ \nabla^2_{\sigma} KE - \DP{}{\lambda} \left( \fr...
...ght) - \DP{}{\varphi} \left( \cos \varphi \frac{u}{a} \DP{u}{\varphi} \right) .$ (3.105)

$BBh(B2$B9`$HBh(B3$B9`$K$D$$$F$O(B, $B$3$l0J9_$N9`$N@0M}$N:]$K:FEP>l$9$k(B.

$BB.EY$N(B2$B3,?eJ?HyJ,$N9`$=$N(B2 ($BBh(B3, 6$B9`(B, (3.105)$B$NBh(B2$B9`(B):

  $\displaystyle \DP{}{\lambda} \left( \frac{v}{a} \DP{u}{\varphi} \right) - \DP{}...
...right) - \DP{}{\lambda} \left( \frac{v}{a \cos \varphi} \DP{v}{\lambda} \right)$    
$\displaystyle =$ $\displaystyle \DP{}{\lambda} \left\{ \frac{v}{a \cos \varphi} \DP{}{\varphi} \l...
...ight\} - \DP{}{\lambda} \left( \frac{v}{a \cos \varphi} \DP{v}{\lambda} \right)$    
$\displaystyle =$ $\displaystyle - \DP{}{\lambda} \left\{ v \left( \frac{1}{a \cos \varphi} \DP{v}...
...}{a \cos \varphi} \DP{}{\varphi} \left( u \cos \varphi \right) \right) \right\}$    
$\displaystyle =$ $\displaystyle - \DP{}{\lambda} (\zeta v) .$ (3.106)

$BB.EY$N(B2$B3,?eJ?HyJ,$N9`$=$N(B3 ($BBh(B11, 15$B9`(B, (3.105)$B$NBh(B3$B9`(B):

  $\displaystyle \DP{}{\varphi} \left( \frac{u}{a} \DP{v}{\lambda} \right) + \DP{}...
...right) - \DP{}{\varphi} \left( \cos \varphi \frac{u}{a} \DP{u}{\varphi} \right)$    
$\displaystyle =$ $\displaystyle \DP{}{\varphi} \left( \frac{u}{a} \DP{v}{\lambda} \right) + \DP{}...
...rac{u}{a} \left( u \sin \varphi - \cos \varphi \DP{u}{\varphi} \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{\varphi} \left( \frac{u}{a} \DP{v}{\lambda} \right) - \DP{}...
...t( u \DP{\cos \varphi}{\varphi} + \cos \varphi \DP{u}{\varphi} \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{\varphi} \left( \frac{u}{a} \DP{v}{\lambda} \right) - \DP{}...
...rphi} \left\{ \frac{u}{a} \DP{}{\varphi} \left( u \cos \varphi \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{\varphi} \left\{ u \cos \varphi \left( \frac{1}{a \cos \var...
...}{a \cos \varphi} \DP{}{\varphi} \left( u \cos \varphi \right) \right) \right\}$    
$\displaystyle =$ $\displaystyle \DP{}{\varphi} \left( \zeta u \cos \varphi \right) .$ (3.107)

(3.102)$B$r(B (3.103), (3.104), (3.105), (3.106), (3.107) $B$rMQ$$$F@0M}$7(B, $BN>JU$K(B $ \frac{1}{a \cos \varphi}$ $B$r3]$1$k$3$H$G(B, (3.99)$B$,F@$i$l$k(B.

($B>ZL@=*$j(B)

3.8.3 $BG.NO3X$N<0(B

(3.85)$B$h$j(B

\begin{align*}\begin{split}\DP{T}{t} \ &= \ - \Dinv{a \cos \varphi} \DP{(u T)}{\...
...{ \dot{\sigma} }{ \sigma } \right) + \frac{Q^{*}}{C_p} . \end{split}\end{align*} (3.108)

$B$3$3$G(B,

$\displaystyle \kappa = \frac{R^d}{C_p^d}$ (3.109)

$B$G$"$k(B.

3.8.4 $B29EY$N4pK\>l$H$:$l$NJ,N%(B

$B2>29EY(B $ T_v$ $B$r $B$N$_$K0MB8$9$k>l(B $ \overline{T}_v(\sigma)$ $B$H(B, $B$=$3$+$i$N$:[email protected],(B $ T'_v$ $B$K$o$1$F5-=R$9$k(B.

$B12EYJ}Dx<0$G(B $ T_v$ $B$r4^$`9`$O

  $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\lambda} \left[ \frac{R^d T_v}{a...
...\cos \varphi} \DP{}{\varphi} \left[ \frac{R^d T_v}{a} \DP{\pi}{\lambda} \right]$    
$\displaystyle =$ $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\lambda} \left[ \frac{R^d \overl...
...phi} \DP{}{\lambda} \left[ \frac{R^d T_v^{\prime}}{a} \DP{\pi}{\varphi} \right]$    
  $\displaystyle + \frac{1}{a \cos \varphi} \DP{}{\varphi} \left[ \frac{R^d \overl...
...phi} \DP{}{\varphi} \left[ \frac{R^d T_v^{\prime}}{a} \DP{\pi}{\lambda} \right]$    
$\displaystyle =$ $\displaystyle - \frac{1}{a \cos \varphi} \left\{ \frac{R^d \overline{T}_v}{a} \...
...}{\varphi} \left[ \frac{R^d T_v^{\prime}}{a} \DP{\pi}{\lambda} \right] \right\}$    
$\displaystyle =$ $\displaystyle - \frac{1}{a \cos \varphi} \left\{ \DP{}{\lambda} \left[ \frac{R^...
...\varphi} \left[ \frac{R^d T_v^{\prime}}{a} \DP{\pi}{\lambda} \right] \right\} .$ (3.110)

$BH/;6J}Dx<0$G(B $ T_v$ $B$r4^$`9`$O

  $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\lambda} \left[ \frac{R^d T_v}{a...
... \DP{}{\varphi} \left[ \frac{R^d T_v}{a} \cos \varphi \DP{\pi}{\varphi} \right]$    
$\displaystyle =$ $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\lambda} \left[ \frac{R^d \overl...
...ambda} \left[ \frac{R^d T_v^{\prime}}{a \cos \varphi} \DP{\pi}{\lambda} \right]$    
  $\displaystyle - \frac{1}{a \cos \varphi} \DP{}{\varphi} \left[ \frac{R^d \overl...
...arphi} \left[ \frac{R^d T_v^{\prime}}{a} \cos \varphi \DP{\pi}{\varphi} \right]$    
$\displaystyle =$ $\displaystyle - \frac{1}{a^2 \cos^2 \varphi} \DP[2]{}{\lambda} \left( R^d \over...
...ambda} \left[ \frac{R^d T_v^{\prime}}{a \cos \varphi} \DP{\pi}{\lambda} \right]$    
  $\displaystyle - \frac{1}{a^2 \cos \varphi} \DP{}{\varphi} \left[ \cos \varphi \...
...arphi} \left[ \frac{R^d T_v^{\prime}}{a} \cos \varphi \DP{\pi}{\varphi} \right]$    
$\displaystyle =$ $\displaystyle - \nabla_{\sigma}^2 \left( R^d \overline{T}_v \pi \right) - \frac...
...phi} \left[ \frac{R^d T_v^{\prime}}{a} \cos \varphi \DP{\pi}{\varphi} \right] .$ (3.111)

$B$3$3$G(B

$\displaystyle \nabla_{\sigma}^{2}$ $\displaystyle \equiv \frac{1}{a^{2} \cos^2 \varphi} \DP[2]{}{\lambda} + \frac{1}{a^{2} \cos \varphi} \DP{}{\varphi} \left( \cos \varphi \DP{}{\varphi} \right)$ (3.112)

$B$rMQ$$$?(B.

$BG.NO3X$N<0$G$O(B, $B29EY(B $ T$ $B$r(B $ \sigma $ $B$N$_$K0MB8$9$k>l(B $ \overline{T}(\sigma)$ $B$H(B, $B$=$3$+$i$N$:[email protected],(B $ T'$ $B$K$o$1$F5-=R$9$k(B. $B$9$J$o$A(B, $B1&JUBh(B1-3$B9`$O

  $\displaystyle \quad - \Dinv{a \cos \varphi} \DP{(u T)}{\lambda} - \Dinv{a \cos \varphi} \DP{(v T \cos \varphi)}{\varphi} + T D$    
  $\displaystyle = - \Dinv{a \cos \varphi} \left\{ \DP{(u \overline{T})}{\lambda} ...
...{(v T^{\prime} \cos \varphi)}{\varphi} \right\} + \overline{T} D + T^{\prime} D$    
  $\displaystyle = - \Dinv{a \cos \varphi} \left\{ \overline{T} \DP{u}{\lambda} + ...
...(v \cos \varphi)}{\varphi} + \DP{(v T^{\prime} \cos \varphi)}{\varphi} \right\}$    
  $\displaystyle \qquad \qquad + \overline{T} \left[ \frac{1}{a \cos \varphi} \DP{...
...frac{1}{a \cos \varphi} \DP{}{\varphi} ( v \cos \varphi) \right] + T^{\prime} D$    
  $\displaystyle = - \Dinv{a \cos \varphi} \DP{(u T^{\prime})}{\lambda} - \Dinv{a \cos \varphi} \DP{(v T^{\prime} \cos \varphi)}{\varphi} + T^{\prime} D .$ (3.113)

3.8.5 $B;YG[J}Dx<0(B

$B0J>e$rMQ$$$FJ}Dx<07O$r5-=R$9$l$P $BO"B3$N<0(B

$\displaystyle \DP{\pi}{t} + \Dvect{v}_H \cdot \Dgrad_{\sigma} \pi = - D - \DP{\dot{\sigma}}{\sigma}.$ (3.114)

$B@E?e05$N<0(B

$\displaystyle \DP{\Phi}{\sigma}=-\frac{R^d T_v}{\sigma}.$ (3.115)

$B1?F0J}Dx<0(B

$\displaystyle \DP{\zeta}{t}$ $\displaystyle = \ \Dinv{a \cos \varphi} \left\{ \DP{v_A}{\lambda} - \DP{(u_A \cos \varphi)}{\varphi} \right\},$ (3.116)
$\displaystyle \DP{D}{t}$ $\displaystyle = \ \Dinv{a \cos \varphi} \left\{ \DP{u_A}{\lambda} + \DP{(v_A \cos \varphi)}{\varphi} \right\} - \nabla^{2}_{\sigma} ( \Phi + R \overline{T} \pi +$   KE$\displaystyle ) .$ (3.117)

$B$3$3$G(B,

$\displaystyle u_A\ (\varphi, \lambda, \sigma)$ $\displaystyle \equiv ( \zeta + f ) v - \dot{\sigma} \DP{u}{\sigma} - \frac{R T_v^{\prime}}{a \cos \varphi} \DP{\pi}{\lambda} + {\cal F}_{\lambda},$ (3.118)
$\displaystyle v_A\ (\varphi, \lambda, \sigma)$ $\displaystyle \equiv - ( \zeta + f ) u - \dot{\sigma} \DP{v}{\sigma} - \frac{R T_v^{\prime}}{a} \DP{\pi}{\varphi} + {\cal F}_{\varphi} .$ (3.119)

$BG.NO3X$N<0(B

\begin{align*}\begin{split}\DP{T}{t} \ &= \ - \Dinv{a \cos \varphi} \left\{ \DP{...
...{ \dot{\sigma} }{ \sigma } \right) + \frac{Q^{*}}{C_p} . \end{split}\end{align*} (3.120)

$B?e>x5$$N<0(B

$\displaystyle \DP{q}{t} \ $ $\displaystyle = \ - \Dinv{a \cos \varphi} \left\{ \DP{(u q)}{\lambda} + \DP{(v q \cos \varphi)}{\varphi} \right\} + q D - \dot{\sigma} \DP{q}{\sigma} + S_{q} .$ (3.121)

(3.16)$B$GF3F~$7$?(B $ Q^*$ $B$+$iG4@-$K$h$k4sM?(B $ C_p \mathcal{D}(\Dvect{v})$ $B$r:F$SJ,N%$7(B, $ Q^*=Q+C_p \mathcal{D}(\Dvect{v})$ $B$H$9$k(B. $B0lHL$KG4(B $B@-$O1?F0J}Dx<0$K$*$$$FE,Ev$J%Q%i%a%?%j%x5$$N<0$KBP$7$F$=$l$>$l?eJ?3H;69`(B $ \mathcal{D}(\zeta)$, $ \mathcal{D}(D)$, $ \mathcal{D}(T)$, $ \mathcal{D}(q)$ $B$r$D$1$k(B. $B$3$N9`$NIU2C$O, $ C_p^d$ $B$r$=$l$>$l(B $ R$, $ C_p$ $B$N$h$&$K$"$i$?$a$FCV$-$J$*$;$P(B, dcpam5$B$NNO3X2aDx$N;YG[J}Dx<07O$rF@$k(B.

3.9 $B;29MJ88%(B

Haltiner, G.J., Williams, R.T., 1980: Numerical Prediction and Dynamic Meteorology (2nd ed.). John Wiley & Sons, 477pp.



... $BM}A[5$BN$N>uBVJ}Dx<0$rMQ$$$k(B3.1
$B4%Ag6u5$$H?e>x5$$O(B, $BF1$8B.EY$H29EY$r$b$D$3$H$r0EL[$N$&$A$K2>Dj(B $B$7$F$$$k(B. $B$7$?$,$C$F(B, $B?e>x5$$K4X$9$k1?F0NLJ]B8B'$*$h$SA4%(%M%k%.!uBVJ}Dx<0$r9MN8$9$kI,MW$,$J$$(B.
... $B?e>x5$$N@8@.>CLG$rL5;k$9$l$P(B3.2
$Bx5$<0$G$O@8@.>CLG$r4^$a$F$$$k(B. $B$7$?$,$C$F(B, $BA4Bg5$$Nx5$$N@8@.>CLG$,5/$-$F$bA4
... $B$N0zNO$K$h$k%]%F%s%7%c%k(B3.3
$B$3$l$O1s?4NO$r9MN8$7$J$$OG@1$N
... $BO"B3$N<0$rMQ$$$FJQ7A$9$k$3$H$GF@$i$l$k(B3.4
$BF3=P$N2aDx$r<($9(B. $B:8JUBh(B1$B9`$HBh(B2$B9`$O

$\displaystyle v_i \DP{}{t} ( \rho v_i ) + v_i \DP{}{x_j} ( \rho v_j v_i )$ $\displaystyle = \DP{}{t} ( \rho v_i^2 ) + \DP{}{x_j} ( \rho v_j v_i^2 ) - \rho ...
...frac{1}{2} v_i^2 \right) - \rho v_j \DP{}{x_j} \left( \frac{1}{2} v_i^2 \right)$    
  $\displaystyle = \DP{}{t} ( \rho v_i^2 ) + \DP{}{x_j} ( \rho v_j v_i^2 ) - \DP{}...
...1}{2} \rho v_i^2 \right) - \DP{}{x_j} \left( \frac{1}{2} v_i^2 \rho v_j \right)$    
  $\displaystyle \quad + \frac{1}{2} v_i^2 \DP{\rho}{t} + \frac{1}{2} v_i^2 \DP{}{x_j} ( \rho v_j )$    
  $\displaystyle = \DP{}{t} \left( \frac{1}{2} \rho v_i^2 \right) + \DP{}{x_j} ( \...
...2 ) + \frac{1}{2} v_i^2 \left\{ \DP{\rho}{t} + \DP{}{x_j} ( \rho v_j ) \right\}$    
  $\displaystyle = \DP{}{t} \left( \frac{1}{2} \rho v_i^2 \right) + \DP{}{x_j} ( \frac{1}{2} \rho v_j v_i^2 ).$    

$B$^$?(B, $B:8JUBh(B5$B9`$O $ \DP{\Phi^*}{t}=0$ $B$G$"$k$H$7$F$$$k(B.

$\displaystyle v_i \rho \DP{\Phi^*}{x_i}$ $\displaystyle = \Phi^* \left\{ \DP{\rho}{t} + \DP{}{x_i}(\rho v_i) \right\} + \rho \DP{\Phi^*}{t} + v_i \rho \DP{\Phi^*}{x_i}$    
  $\displaystyle = \DP{}{t} ( \rho \Phi^* ) + \DP{}{x_i} ( \rho \Phi^* v_i ).$    

... $B$G6a;w$9$k$H(B3.5
$B$3$N6a;w$K$O5?Ld$,;D$k(B. $B>uBVJ}Dx<0$K$*$$$F$O(B, $B5$BNDj?t(B $ R$ $B$r(B $ R^d$ $B$H$9$k6a;w$O(B ($B2>29EY(B $ T_v$ $B$rF3F~$9$k$3$H$G(B)$B9T$J$o$J$+$C$?(B. $ C_p$ $B$K$D$$$F$@$16a;w$9$k$N$O6a;w$N%l%Y%k$K(B $B0l4S@-$,$J$$$h$&$K;W$o$l$k(B.

$B0J2<$O$=$N $ r=\rho^v/\rho^d$ $B$rMQ$$$F$$$k(B. $BA4Bg5$$NFbIt(B $B%(%M%k%.!<$O(B

$\displaystyle \rho \varepsilon$ $\displaystyle = \rho^d \varepsilon^d + \rho^v \varepsilon^v$    
  $\displaystyle = \rho^d C_v^d T + \rho^v C_v^v T$    
  $\displaystyle = \rho \left( \frac{ \rho^d C_v^d + \rho^v C_v^v}{\rho} \right) T$    
  $\displaystyle = \rho \left( \frac{ C_v^d + r C_v^v }{ 1+r } \right) T,$    

$B$H$J$k(B. $B$7$?$,$C$F(B,

$\displaystyle C_v \equiv \frac{ C_v^d + r C_v^v }{ 1+r },
$

$B$G$"$k(B. $B$^$?(B,

$\displaystyle R \equiv \frac{R^d + r R^v}{1+r}
\left( = R^d \frac{ 1 + r/\epsilon}{1+r} \right) ,
$

$B$G$"$k$+$i(B,

$\displaystyle C_p$ $\displaystyle = C_v + R$    
  $\displaystyle = \frac{ C_v^d + r C_v^v + R^d + r R^v }{1+r}$    
  $\displaystyle = \frac{ C_p^d + r C_p^v}{1+r}$    
  $\displaystyle = C_p^d \frac{ 1+rC_p^v/C_p^d}{1+r}$    
  $\displaystyle \sim C_p^d \frac{ 1+ 8 r/7 \epsilon}{1+r},$    

$B$H$J$k(B. $B$3$3$G(B, $ C_p^d = ( C_v^d+R^d ) \sim ( \frac{5}{2}R^d +R^d ) =
\frac{7}{2} R^d $, $B$*$h$S(B $ C_p^v = ( C_v^v + R^v ) \sim ( 3R^v + R^v
) = 4 R^v$ $B$rMQ$$$?(B. $BG.NO3X$N<0$G$O(B, $B$3$N>u67$KBP$7$F(B, $ C_p \sim
C_p^d$ $B$H6a;w$7$?(B. $B$7$+$7(B, $B@ENO3XJ?9U$N<0$G$O(B, $B$?$C$?(B $ 8/7$ $B$N0c$$$J$N(B $B$K(B $ R$ $B$r(B $ R^d$ $B$K6a;w$;$:(B, $B2>29EY$NF3F~$K$h$j87L)$K(B $B
... $B$,@.$j$?$D(B3.6
$B$3$l$O<+L@$N$3$H$H$7$?$$(B. $B%9%+%i!<(B $ \psi$ $B$N:BI8JQ49$O:BI8JQ49%F(B $B%s%=%k$K0MB8$7$J$$(B($B$GF1$8CM$r$H$k(B)$B$+$i$G$"$k(B.

$B0lJ}(B, $B%Y%/%H%k$N:BI8JQ49$O(B, $B:BI8JQ49%F%s%=%k$H$N@Q$GI=8=$5$l(B $B$k(B. $B$7$?$,$C$F(B, $B:BI8JQ49%F%s%=%k<+BN$,;~4VJQ2=$9$k>l9g(B, $BEvA3%Y%/(B $B%H%k$N;~4VHyJ,$O:BI8JQ49%F%s%=%k$N;~4VHyJ,$N1F6A$r

... $BF0%(%M%k%.!<$N;~4VJQ2=$K4sM?$7$J$$$3$H$,$o$+$k(B3.7
$B1s?4NO$r=ENO2CB.EY$+$iJ,N%$7$F%(%M%k%.!<$N<0$G9MN8$9$k$H(B, $B$3$N4sM?$O%-%c%s%;%k$9$k$3$H$J$/;D$k(B.

next up previous
: A. $B;HMQ>e$NCm0U$H%i%$%;%s%95,Dj(B : dcpam5 $B;YG[J}Dx<07O$NF3=P$K4X$9$k;29M;qNA(B : 2. $B:BI87O$N
Yasuhiro MORIKAWA $BJ?@.(B20$BG/(B8$B7n(B4$BF|(B