next up previous
: 4. $BOG@1Bg5$$NJ*M}Dj?t(B : dcpam5 $B;YG[J}Dx<07O$H$=$NN%;62=(B : 2. $B:BI87O!&JQ498x<0(B


3. $BNO3X2aDx(B

3.1 $B$O$8$a$K(B

$B$3$N>O$G$ONO3X2aDx$N;YG[J}Dx<0$r5-$7(B, $B$=$N;YG[J}Dx<0$NN%;62=$r(B $B9T$&(B.

$B$3$3$G=R$Y$kNO3X2aDx$H$O(B, $BN.BN$N;YG[J}Dx<0$K$*$1$k30NO9`$r=|$$$?ItJ,$r;X$9(B. $B30NO9`$G$"$kJ|MpN.3H;6$d1@$J$I$K4X$9$k2aDx$K$D$$$F$O(B $BJL;f$r;2>H$N$3$H(B.

$BN%;62=$K$D$$$F$O(B, $B6u4V$K4X$9$kN%;62=$G$"$k1tD>N%;62=$H(B, $B?eJ?N%;62=$NJ}K!$J$i$S$K;~4V$K4X$9$kN%;62=$r9T$&(B.

3.2 $B;YG[J}Dx<0(B

$B$3$3$G$ONO3X2aDx$N;YG[J}Dx<07O$r<($9(B. $B$3$NJ}Dx<07O$N>\:Y$K4X$7$F$O(B, Haltiner and Williams (1980) $B$b$7$/$O(B $BJL;f!X(B $B;YG[J}Dx<07O$NF3=P$K4X$9$k;29M;qNA(B$B!Y(B $B$N!XNO3X2aDx$N;YG[J}Dx<07O$NF3=P!Y$r;2>H$;$h(B.

3.2.1 $BO"B3$N<0(B


$\displaystyle \DP{\pi}{t} + \Dvect{v}_H \cdot \nabla_{\sigma} \pi$ $\displaystyle = - D - \DP{\dot{\sigma}}{\sigma}.$ (3.1)

3.2.2 $B@E?e05$N<0(B


$\displaystyle \DP{\Phi}{\sigma} = - \frac{RT_v}{\sigma}.$ (3.2)

3.2.3 $B1?F0J}Dx<0(B


$\displaystyle \DP{\zeta}{t} \ $ $\displaystyle = \ \Dinv{a} \left( \Dinv{1 - \mu^2} \DP{V_A}{\lambda} - \DP{U_A}{\mu} \right) + {\cal D}(\zeta),$ (3.3)
$\displaystyle \DP{D}{t} \ $ $\displaystyle = \ \Dinv{a} \left( \Dinv{1 - \mu^2} \DP{U_A}{\lambda} + \DP{V_A}{\mu} \right) - \nabla^{2}_{\sigma} ( \Phi + R \overline{T} \pi +$   KE$\displaystyle ) + {\cal D}(D).$ (3.4)

3.2.4 $BG.NO3X$N<0(B


\begin{align*}\begin{split}\DP{T}{t} \ &= \ - \Dinv{a} \left( \Dinv{1 - \mu^2} \...
...ac{Q}{C_p} + {\cal D}(T) + {\cal D}^{\prime}(\Dvect{v}). \end{split}\end{align*} (3.5)

3.2.5 $B?e>x5$$N<0(B


\begin{align*}\begin{split}\DP{q}{t} \ &= \ - \Dinv{a} \left( \Dinv{1 - \mu^2} \...
...uad - \dot{\sigma} \DP{q}{\sigma} + S_{q} + {\cal D}(q). \end{split}\end{align*} (3.6)

$B$3$3$G(B, $BFHN)JQ?t$O0J2<$NDL$j$G$"$k(B.

$\displaystyle \varphi$ $\displaystyle : \quad $B0^EY(B [\mathrm{deg.}],$ (3.7)
$\displaystyle \lambda$ $\displaystyle : \quad $B7PEY(B [\mathrm{deg.}],$ (3.8)
$\displaystyle \sigma$ $\displaystyle \equiv p/p_s,$ (3.9)
$\displaystyle t$ $\displaystyle : \quad $B;~4V(B [\mathrm{s}].$ (3.10)

$B$3$3$G(B, $ p$$B$O5$05(B, $ p_s$ $B$OCOI=LL5$05$G$"$k(B. $B$^$?(B $ \mu \equiv \sin \varphi$ $B$G$"$k(B.

$B%b%G%k$G;~4VH/E8$r7W;;$9$k$3$H$H$J$kM=JsJQ?t$O0J2<$NDL$j$G$"$k(B.

$\displaystyle \pi\ (\varphi, \lambda)$ $\displaystyle \equiv \ln p_s,$ (3.11)
$\displaystyle T\ (\varphi, \lambda, \sigma)$ $\displaystyle : \quad $B5$29(B [\mathrm{K}],$ (3.12)
$\displaystyle q\ (\varphi, \lambda, \sigma)$ $\displaystyle : \quad $BHf<>(B [\mathrm{kg}\ \mathrm{kg}^{-1}],$ (3.13)
$\displaystyle \zeta\ (\varphi, \lambda, \sigma)$ $\displaystyle \equiv \Dinv{a} \left( \Dinv{1 - \mu^2} \DP{V}{\lambda} - \DP{U}{\mu} \right) : \quad $B12EY(B [\mathrm{s}^{-1}],$ (3.14)
$\displaystyle D\ (\varphi, \lambda, \sigma)$ $\displaystyle \equiv \Dinv{a} \left( \Dinv{1 - \mu^2} \DP{U}{\lambda} + \DP{V}{\mu} \right) : \quad $BH/;6(B [\mathrm{s}^{-1}].$ (3.15)

$B$3$3$G(B,

$\displaystyle U(\varphi, \lambda, \sigma)$ $\displaystyle \equiv u(\varphi, \lambda, \sigma) \cos \varphi,$ (3.16)
$\displaystyle V(\varphi, \lambda, \sigma)$ $\displaystyle \equiv v(\varphi, \lambda, \sigma) \cos \varphi,$ (3.17)
$\displaystyle u$ $\displaystyle :$   $BEl@>IwB.(B$\displaystyle ,$ (3.18)
$\displaystyle v$ $\displaystyle :$   $BFnKLIwB.(B (3.19)

$B$G$"$k(B. $BN.@~4X?t(B$ \psi$$B$HB.EY%]%F%s%7%c%k(B$ \chi$$B$rF3F~$9$k$H(B, $ U$, $ V$, $ \zeta$, $ D$$B$O$=$l$>$l0J2<$N$h$&$KI=$o$5$l$k(B.

$\displaystyle U$ $\displaystyle = \Dinv{a} \left( \DP{\chi}{\lambda} - (1-\mu^2) \DP{\psi}{\mu} \right),$ (3.20)
$\displaystyle V$ $\displaystyle = \Dinv{a} \left( \DP{\psi}{\lambda} + (1-\mu^2) \DP{\chi}{\mu} \right),$ (3.21)
$\displaystyle \zeta$ $\displaystyle = \Dlapla \psi,$ (3.22)
$\displaystyle D$ $\displaystyle = \Dlapla \chi.$ (3.23)

$B3F;~4V%9%F%C%W$G?GCGE*$K5a$a$i$l$kJQ?t$O0J2<$NDL$j$G$"$k(B.

$\displaystyle \Phi$ $\displaystyle \equiv gz : \quad $B%8%*%]%F%s%7%c%k9bEY(B [\mathrm{m}^{2}\ \mathrm{s}^{-2}],$ (3.24)
$\displaystyle \dot{\sigma}$ $\displaystyle \equiv \DD{\sigma}{t} \ \equiv \ \DP{\sigma}{t} + \frac{u}{a \cos...
... \DP{\sigma}{\lambda} + \frac{v}{a} \DP{\sigma}{\varphi} + \DP{\sigma}{\sigma},$ (3.25)
$\displaystyle \overline{T}\ (\sigma)$ $\displaystyle : \quad $B4p=`29EY(B [\mathrm{K}],$ (3.26)
$\displaystyle T^{\prime}\ (\varphi, \lambda, \sigma)$ $\displaystyle \equiv T - \overline{T},$ (3.27)
$\displaystyle T_v\ (\varphi, \lambda, \sigma)$ $\displaystyle \equiv T \left\{ 1 + \left(\epsilon_v^{-1} - 1\right) q \right\},$ (3.28)
$\displaystyle T_v^{\prime}\ (\varphi, \lambda, \sigma)$ $\displaystyle \equiv T_v - \overline{T},$ (3.29)
$\displaystyle U_A\ (\varphi, \lambda, \sigma)$ $\displaystyle \equiv ( \zeta + f ) V - \dot{\sigma} \DP{U}{\sigma} - \frac{R T_v^{\prime}}{a} \DP{\pi}{\lambda} + {\cal F}_{\lambda} \cos \varphi,$ (3.30)
$\displaystyle V_A\ (\varphi, \lambda, \sigma)$ $\displaystyle \equiv - ( \zeta + f ) U - \dot{\sigma} \DP{V}{\sigma} - \frac{R T_v^{\prime}}{a} (1-\mu^2) \DP{\pi}{\mu} + {\cal F}_{\varphi} \cos \varphi,$ (3.31)
$\displaystyle \Dvect{v}_H \cdot \nabla_{\sigma} \pi$ $\displaystyle \equiv \frac{U}{a (1 - \mu^2)} \DP{\pi}{\lambda} + \frac{V}{a} \DP{\pi}{\mu}$ (3.32)
$\displaystyle \nabla^{2}_{\sigma}$ $\displaystyle \equiv \frac{1}{a^{2} (1-\mu^2)} \DP[2]{}{\lambda} + \frac{1}{a^{2}} \DP{}{\mu} \left[ (1-\mu^2) \DP{}{\mu} \right],$ (3.33)
KE$\displaystyle \ (\varphi, \lambda, \sigma)$ $\displaystyle \equiv \frac{U^{2}+V^{2}}{2 (1-\mu^2) }$ (3.34)
$\displaystyle {\cal D}(\zeta)$ $\displaystyle : \qquad $B12EY$N?eJ?3H;6$H%9%]%s%8AX$K$*$1$k;60o(B,$ (3.35)
$\displaystyle {\cal D}(D)$ $\displaystyle : \qquad $BH/;6$N?eJ?3H;6$H%9%]%s%8AX$K$*$1$k;60o(B,$ (3.36)
$\displaystyle {\cal D}(T)$ $\displaystyle : \qquad $BG.$N?eJ?3H;6(B,$ (3.37)
$\displaystyle {\cal D}(q)$ $\displaystyle : \qquad $B?e>x5$$N?eJ?3H;6(B,$ (3.38)
$\displaystyle {\cal F}_\lambda \ (\varphi, \lambda, \sigma)$ $\displaystyle : \qquad $B>.5,LO1?F02aDx(B ($B7PEYJ}8~(B),$ (3.39)
$\displaystyle {\cal F}_\varphi \ (\varphi, \lambda, \sigma)$ $\displaystyle : \qquad $B>.5,LO1?F02aDx(B ($B0^EYJ}8~(B),$ (3.40)
$\displaystyle Q \ (\varphi, \lambda, \sigma)$ $\displaystyle : \qquad $BJ|<M(B, $B6E7k(B, $B>.5,LO1?F02aDxEy$K$h$k2CG.!&29EYJQ2=(B,$ (3.41)
$\displaystyle S_q \ (\varphi, \lambda, \sigma)$ $\displaystyle : \qquad $B6E7k(B, $B>.5,LO1?F02aDxEy$K$h$k?e>x5$%=!<%9(B,$ (3.42)
$\displaystyle {\cal D}' \ (\Dvect{v})$ $\displaystyle : \qquad $BK`;$G.(B.$ (3.43)

$B3F?eJ?3H;6(B(3.35)$B!A(B(3.38) $B$K4X$7$F$O(B3.2.7$B@a$G@bL@$5$l$k(B. $BDj?t$O0J2<$NDL$j$G$"$k(B.

$\displaystyle a$ $\displaystyle : \quad $BOG@1H>7B(B [\mathrm{m}],$ (3.44)
$\displaystyle R$ $\displaystyle : \quad $B4%AgBg5$$N5$BNDj?t(B [\mathrm{J\ kg}^{-1}\ \mathrm{K}^{-1}],$ (3.45)
$\displaystyle C_p$ $\displaystyle : \quad $B4%AgBg5$$NBg5$Dj05HfG.(B [\mathrm{J\ kg}^{-1}\ \mathrm{K}^{-1}],$ (3.46)
$\displaystyle f$ $\displaystyle : \quad $B%3%j%*%j%Q%i%a!<%?(B [\mathrm{s}^{-1}],$ (3.47)
$\displaystyle \kappa$ $\displaystyle \equiv R/C_p,$ (3.48)
$\displaystyle \epsilon_v$ $\displaystyle : \quad $B?e>x5$J,;RNLHf(B.$ (3.49)

3.2.6 $B6-3&>r7o(B

$B1tD>N.$K4X$9$k6-3&>r7o$O(B

$\displaystyle \dot{\sigma} = 0 \ \ \ at \ \ \sigma = 0 , \ 1 .$ (3.50)

$B$G$"$k(B. $B$h$C$F(B(3.1) $B$+$i(B, $BCOI=5$05$N;~4VJQ2=<0$H(B $ \sigma$$B7O$G$N1tD>B.EY(B $ \dot{\sigma}$$B$r5a$a$k?GCG<0(B

$\displaystyle \DP{\pi}{t} = - \int_{0}^{1} \Dvect{v}_{H} \cdot \nabla_{\sigma} \pi d \sigma - \int_{0}^{1} D d \sigma ,$ (3.51)

$\displaystyle \dot{\sigma} = - \sigma \DP{\pi}{t} - \int_{0}^{\sigma} D d \sigma - \int_{0}^{\sigma} \Dvect{v}_{H} \cdot \nabla_{\sigma} \pi d \sigma ,$ (3.52)

$B$,F3$+$l$k(B.


3.2.7 $B?eJ?3H;6$H%9%]%s%8AX(B

$B?eJ?3H;6$H%9%]%s%8AX$K$*$1$k12EY$HH/;6$N;60o$O

$\displaystyle {\cal D}(\zeta)$ $\displaystyle = {\cal D_{HD}}(\zeta) + {\cal D_{SL}}(\zeta)$ (3.53)
$\displaystyle {\cal D}(D)$ $\displaystyle = {\cal D_{HD}}(D) + {\cal D_{SL}}(D)$ (3.54)
$\displaystyle {\cal D}(T)$ $\displaystyle = {\cal D_{HD}}(T) + {\cal D_{SL}}(T)$ (3.55)
$\displaystyle {\cal D}(q)$ $\displaystyle = {\cal D_{HD}}(q)$ (3.56)

$B$3$3$G(B, $ {\cal D_{HD}}$, $ {\cal D_{SL}}$ $B$O$=$l$>$l?eJ?3H;6$H%9%]%s%8AX$K$*$1$k(B $B;60o$rI=$9(B.

$B?eJ?3H;69`$O(B, $B $ \nabla^{N_D}$ $B$N7A$G7W;;$9$k(B.

$\displaystyle {\cal D_{HD}}(\zeta) = - K_{HD} \left[ (-1)^{N_D/2} \nabla^{N_D} - \left( \frac{2}{a^2} \right)^{N_D/2} \right] \zeta ,$ (3.57)

$\displaystyle {\cal D_{HD}}(D) = - K_{HD} \left[ (-1)^{N_D/2} \nabla^{N_D} - \left( \frac{2}{a^2} \right)^{N_D/2} \right] D ,$ (3.58)

$\displaystyle {\cal D_{HD}}(T) = - (-1)^{N_D/2} K_{HD} \nabla^{N_D} T ,$ (3.59)

$\displaystyle {\cal D_{HD}}(q) = - (-1)^{N_D/2} K_{HD} \nabla^{N_D} q .$ (3.60)

$B>.$5$J%9%1!<%k$KA*BrE*$J?eJ?3H;6$rI=$9$?$a(B, $B47Nc$H$7$F(B $ N_D$ $B$K$O(B 4$ \sim$16 $B$rMQ$$$k$3$H$,B?$$(B.

$B%9%]%s%8AX$K$*$1$k1?F0NL$N;60o9`$O(B, $BEl@>[email protected],$r8:?j$5$;$k>l9g$H$5$;$J$$>l9g$N(B 2 $BDL$j$N(B $B7W;;K!$rF3F~$9$k(B. $BEl@>[email protected],$b8:?j$5$;$k>l9g$K$O(B,

$\displaystyle {\cal D_{SL}}(\zeta)$ $\displaystyle = - \gamma_M \zeta,$ (3.61)
$\displaystyle {\cal D_{SL}}(D)$ $\displaystyle = - \gamma_M D,$ (3.62)

$B$H$J$k(B. $B$3$3$G(B, $ \gamma_M$ $B$O%9%]%s%8AX$K$*$1$k1?F0NL$N8:?j78?t$G$"$k(B. $BEl@>[email protected],$r8:?j$5$;$J$$>l9g$K$O(B,

$\displaystyle {\cal D_{SL}}(\zeta)$ $\displaystyle = - \gamma_M ( \zeta - \bar{\zeta} ),$ (3.63)
$\displaystyle {\cal D_{SL}}(D)$ $\displaystyle = - \gamma_M ( D - \bar{D} ),$ (3.64)

$B$H$J$k(B. $B$3$3$G(B, $ \bar{}$ $B$O(B, $BEl@>J?6Q$rI=$9(B.

$B%9%]%s%8AXFb$N29EY>qMp$N8:?j$K$O0J2<$N9`$rF3F~$9$k(B.

$\displaystyle {\cal D_{SL}}(T)$ $\displaystyle = - \gamma_H ( T - \bar{T} ),$ (3.65)

$B$3$3$G(B, $ \gamma_H$ $B$O%9%]%s%8AX$K$*$1$k29EY>qMp$N8:?j78?t$G$"$k(B.

$B8:?j78?t(B $ \gamma_M$, $ \gamma_H$ $B$N(B $ \sigma$ $B0MB8@-$K0lHL7A$O$J$$$,(B, dcpam $B$G$O(B $B2<$N$h$&$J(B $ \sigma$ $B0MB8@-$r9MN8$9$k(B.

$\displaystyle \gamma_M = \left\{ \begin{array}{ll} \gamma_{M,0} \left( \frac{\s...
...e \sigma_{lim}$)} \\ 0 . & \text{($\sigma > \sigma_{lim}$)} \end{array} \right.$ (3.66)
$\displaystyle \gamma_H = \left\{ \begin{array}{ll} \gamma_{H,0} \left( \frac{\s...
...e \sigma_{lim}$)} \\ 0 . & \text{($\sigma > \sigma_{lim}$)} \end{array} \right.$ (3.67)

$B$3$3$G(B, $ \gamma_{M,0}$, $ \gamma_{H,0}$, $ N_{SL}$, $ \sigma_{lim}$ $B$O$=$l$>$l(B, $ \sigma = \sigma_0$ $B$K$*$1$k8:?j78?t(B, $ \sigma$ $B0MB8@-$N;X?t(B, $B%9%]%s%8AX$N(B $B2<8B$N(B $ \sigma$ $B$G$"$k(B. dcpam $B$G$O(B, $ \sigma_0$ $B$O%b%G%k:G>eAX$N(B $ \sigma$ $B$H$7$F$$$k(B.

3.3 $B1tD>N%;62=(B

$B$3$3$G$O;YG[J}Dx<0$r1tD>J}8~$KN%;62=$9$k(B. Arakawa and Suarez(1983) $B$K=>$C$F(B, (3.1)$B!A(B(3.6) $B$r1tD>J}8~$K:9J,$K$h$C$FN%;62=$9$k(B. $B3FJ}Dx<0$NN%;62=I=8=$O

3.3.1 $BO"B3$N<0(B, $B1tD>B.EY(B


$\displaystyle \DP{\pi}{t}$ $\displaystyle = - \sum_{k=1}^{K} ( D_k + \Dvect{v}_k \cdot \nabla \pi ) \Delta \sigma_k,$ (3.68)
$\displaystyle \dot{\sigma}_{k-1/2}$ $\displaystyle = - \sigma_{k-1/2} \DP{\pi}{t} - \sum_{l=k}^{K} ( D_l + \Dvect{v}_l \cdot \nabla \pi ) \Delta \sigma_l \qquad (k = 2, \cdots, K),$ (3.69)
$\displaystyle \dot{\sigma}_{1/2}$ $\displaystyle = \dot{\sigma}_{K+1/2} = 0.$ (3.70)

$B$3$3$G(B,

$\displaystyle \Dvect{v}_k \cdot \nabla \pi = \frac{U_k}{a (1-\mu^2)} \DP{\pi}{\lambda} + \frac{V_k}{a (1-\mu^2)} (1-\mu^2) \DP{\pi}{\mu}.$ (3.71)

3.3.2 $B@E?e05$N<0(B


\begin{align*}\begin{split}\Phi_{1} & = \Phi_{s} + C_{p} ( \sigma_{1}^{-\kappa} - 1 ) T_{v,1} \\ & = \Phi_{s} + C_{p} \alpha_{1} T_{v,1}. \end{split}\end{align*} (3.72)

\begin{align*}\begin{split}\Phi_k - \Phi_{k-1} & = C_{p} \left[ \left( \frac{ \s...
... = C_{p} \alpha_k T_{v,k} + C_{p} \beta_{k-1} T_{v,k-1}. \end{split}\end{align*} (3.73)

$B$3$3$G(B,

$\displaystyle \alpha_k$ $\displaystyle = \left( \frac{ \sigma_{k-1/2} } { \sigma_k } \right)^{\kappa} -1 ,$ (3.74)
$\displaystyle \beta_k$ $\displaystyle = 1- \left( \frac{ \sigma_{k+1/2} } { \sigma_k } \right)^{\kappa} ,$ (3.75)
$\displaystyle \Phi_{s}$ $\displaystyle = gz_{s}$ (3.76)

$B$G$"$j(B, $ z_{s}$$B$OCOI=LL9bEY$G$"$k(B.

3.3.3 $B1?F0J}Dx<0(B


$\displaystyle \DP{\zeta_k}{t}$ $\displaystyle = \Dinv{a} \left( \Dinv{1 - \mu^2} \DP{{V_A}_{,k}}{\lambda} - \DP{{U_A}_{,k}}{\mu} \right) + {\cal D}(\zeta_k),$ (3.77)
$\displaystyle \DP{D_k}{t}$ $\displaystyle = \Dinv{a} \left( \Dinv{1 - \mu^2} \DP{{U_A}_{,k}}{\lambda} + \DP...
...t) - \nabla^{2}_{\sigma} ( \Phi_k + C_{p} \hat{\kappa}_k \overline{T}_k \pi + ($KE$\displaystyle )_k ) + {\cal D}(D_k).$ (3.78)

$B$3$3$G(B,

\begin{align*}\begin{split}{U_A}_{,1} & = ( \zeta_1 + f ) V_1 - \frac{1}{2 \Delt...
... \DP{\pi}{\lambda} + {\cal F}_{\lambda, K} \cos \varphi, \end{split}\end{align*} (3.79)

\begin{align*}\begin{split}{V_A}_{,1} & = - ( \zeta_1 + f ) U_1 - \frac{1}{2 \De...
...u^2) \DP{\pi}{\mu} + {\cal F}_{\varphi, K} \cos \varphi, \end{split}\end{align*} (3.80)

\begin{align*}\begin{split}\hat{\kappa}_k & = \frac{ \sigma_{k-1/2}( \sigma^{\ka...
...\alpha_k + \sigma_{k+1/2} \beta_k } { \Delta \sigma_k }, \end{split}\end{align*} (3.81)
$\displaystyle %
T_{v,k}'$ $\displaystyle = T_{v,k} - \overline{T}_k,$ (3.82)
$\displaystyle %
($KE$\displaystyle )_k$ $\displaystyle = \frac{U^{2}_k + V^{2}_k}{2 (1-\mu^2)}.$ (3.83)

3.3.4 $BG.NO3X$N<0(B


\begin{align*}\begin{split}\DP{T_k}{t} & = - \Dinv{a \cos \varphi} \left( \Dinv{...
...frac{Q_k}{C_{p}} + {\cal D}(T_k) + {\cal D}'(\Dvect{v}). \end{split}\end{align*} (3.84)

$B$3$3$G(B,

\begin{align*}\begin{split}H_k & \equiv T_k' D_k - \frac{1}{\Delta \sigma_k} [ \...
...la \pi ) \Delta \sigma_K \frac{T_{v,K}}{\Delta \sigma_K} \end{split}\end{align*} (3.85)

$B$G$"$j(B,

\begin{align*}\begin{split}\hat{T}_{k-1/2} & = \frac{ \left[ \left( \displaystyl...
... K), \\ \hat{T}_{1/2} & = 0, \\ \hat{T}_{K + 1/2} & = 0, \end{split}\end{align*} (3.86)

$\displaystyle a_k$ $\displaystyle = \alpha_k \left[ 1- \left( \frac{ \sigma_k }{ \sigma_{k-1} } \right)^{\kappa} \right]^{-1},$ (3.87)
$\displaystyle b_k$ $\displaystyle = \beta_k \left[ \left( \frac{ \sigma_k }{ \sigma_{k+1} } \right)^{\kappa} - 1 \right]^{-1} .$ (3.88)

3.3.5 $B?e>x5$$N<0(B


$\displaystyle \DP{q_k}{t}$ $\displaystyle = - \Dinv{a} \left( \Dinv{1 - \mu^2} \DP{U_k q_k}{\lambda} + \DP{V_k q_k}{\mu} \right) + R_k + S_{q,k} + {\cal D}(q_k).$ (3.89)

$B$3$3$G(B,

\begin{align*}\begin{split}R_1 &= q_1 D_1 - \frac{1}{2 \Delta \sigma_1} \dot{\si...
...Delta \sigma_K} \dot{\sigma}_{K-1/2} ( q_{K-1} - q_K ) . \end{split}\end{align*} (3.90)

3.4 $B?eJ?N%;62=(B

$B$3$3$G$O;YG[J}Dx<0$r?eJ?N%;62=$9$k(B. $B?eJ?J}8~$NN%;62=$O%9%Z%/%H%kJQ49K!$rMQ$$$k(B (Bourke, 1988). $BHs@~7A9`$O3J;RE@>e$G7W;;$9$k(B. $B3FJ}Dx<0$N%9%Z%/%H%kI=8=$O0J2<$N$h$&$K$J$k(B. $B%9%Z%/%H%kI=8=$K4X$9$k5-9f$N0UL#$K$D$$$F$O(B 2.5$B@a$r;2>H$5$l$?$$(B. $B$=$N>\:Y$K$D$$$F$OBh(BA$B>O(B $B$r;2>H$;$h(B. $B$J$*(B, $B4JC12=$N$?$a(B, $BItJ,E*$K1tD>J}8~E:;z(B$ k$$B$r>JN,$9$k(B.

3.4.1 $BO"B3$N<0(B


$\displaystyle \DP{\tilde{\pi}_n^m}{t}$ $\displaystyle = - \sum_{k=1}^{K} (\tilde{D}_n^m)_k \Delta \sigma_k + \frac{1}{I} \sum_{i=1}^{I} \sum_{j=1}^{J} Z_{ij} Y_n^{m *} ( \lambda_i, \mu_j ) w_j.$ (3.91)

$B$3$3$G(B,

$\displaystyle Z \equiv - \sum_{k=1}^{K} \Dvect{v}_k \cdot \nabla \pi \Delta \sigma_k.$ (3.92)

3.4.2 $B1?F0J}Dx<0(B


\begin{align*}\begin{split}\DP{\tilde{\zeta}_n^m}{t} & = \frac{1}{I} \sum_{i=1}^...
... \\ & \quad + \tilde{\cal D}_{M,n}^m \tilde{\zeta}_n^m , \end{split}\end{align*} (3.93)
\begin{align*}\begin{split}\DP{\tilde{D}_n^m}{t} & = \frac{1}{I} \sum_{i=1}^{I} ...
...{T}_k \pi_n^m ) + \tilde{\cal D}_{M,n}^m \tilde{D}_n^m . \end{split}\end{align*} (3.94)

$B$3$3$G(B,

$\displaystyle \tilde{\cal D}_{M,n}^m$ $\displaystyle = - K_{HD} \left[ \left( \frac{-n(n+1)}{a^{2}} \right)^{N_D/2} - \left( \frac{2}{a^2} \right)^{N_D/2} \right] - \tilde{\gamma}_{M,k,n}^m ,$ (3.95)
$\displaystyle \tilde{\gamma}_{M,k,n}^m$ $\displaystyle = \left\{ \begin{array}{ll} \tilde{\gamma}_{M,0,n}^m \left( \frac...
...text{($k \ge k_{SLlim}$)} \\ 0 . & \text{($k < k_{SLlim}$)} \end{array} \right.$ (3.96)

$B$3$3$G(B, $ k_{SLlim}$ $B$O%9%]%s%8AX$rE,1~$9$k2<8B$N(B $ k$ $B$G$"$k(B. $B$^$?(B, $B%9%]%s%8AX$K$*$$$FEl@>[email protected],$b8:?j$5$;$k>l9g$K$O(B, $ \tilde{\gamma}_{M,0,n}^m = \gamma_{M,0}$ $B$G$"$j(B, $BEl@>[email protected],$r(B $B8:?j$5$;$J$$>l9g$K$O(B,

$\displaystyle \tilde{\gamma}_{M,0,n}^m$ $\displaystyle = \left\{ \begin{array}{ll} \gamma_{M,0}, & \text{($m \ne 0$)} \\ 0 , & \text{($m = 0$)} \end{array} \right.$ (3.97)

$B$G$"$k(B.

3.4.3 $BG.NO3X$N<0(B


\begin{align*}\begin{split}\DP{\tilde{T}_n^m}{t} & = - \frac{1}{I} \sum_{i=1}^{I...
...D}'_{ij}(\Dvect{v}) Y_n^{m *} ( \lambda_i, \mu_j ) w_j . \end{split}\end{align*} (3.98)

$B$3$3$G(B,

$\displaystyle \tilde{\cal D}_{H,n}^m$ $\displaystyle = - K_{HD} \left( \frac{-n(n+1)}{a^{2}} \right)^{N_D/2} - \tilde{\gamma}_{H,k,n}^m .$ (3.99)
$\displaystyle \tilde{\gamma}_{H,k,n}^m$ $\displaystyle = \left\{ \begin{array}{ll} \tilde{\gamma}_{H,0,n}^m \left( \frac...
...text{($k \ge k_{SLlim}$)} \\ 0 , & \text{($k < k_{SLlim}$)} \end{array} \right.$ (3.100)
$\displaystyle \tilde{\gamma}_{H,0,n}^m$ $\displaystyle = \left\{ \begin{array}{ll} \gamma_{H,0}, & \text{($m \ne 0$)} \\ 0 , & \text{($m = 0$)} \end{array} \right.$ (3.101)

$B$G$"$k(B.

3.4.4 $B?e>x5$$N<0(B


\begin{align*}\begin{split}\DP{\tilde{q}_n^m}{t} & = - \frac{1}{I} \sum_{i=1}^{I...
... w_j \\ & \quad + \tilde{\cal D}_{q,n}^m \tilde{q}_n^m . \end{split}\end{align*} (3.102)

$B$3$3$G(B,

$\displaystyle \tilde{\cal D}_{q,n}^m$ $\displaystyle = - K_{HD} \left( \frac{-n(n+1)}{a^{2}} \right)^{N_D/2}$ (3.103)

$B$G$"$k(B.

3.5 $B;~4V@QJ,(B

$B$3$3$G$O;~4V@QJ,%9%-!<%`$K$D$$$F5-$9(B.

$B;~4V:9J,$K$O(B, $BJ#?t$NJ}K!$rAH$_9g$o$;$FMQ$$$k(B. $BMQ$$$kJ}K!$N(B $B35MW$r0J2<$K<($9(B.

$B$3$NJ}K!$O(B, $BM=JsJQ?t$r(B $ {\cal A}$ $B$HI=$9$H(B, $B0J2<$N(B 3 $B<0$GI=8=$5$l$k(B.

$\displaystyle \frac{ \hat{\cal A}^{t+\Delta t} - \bar{\cal A}^{t-\Delta t} }{ 2...
...+\Delta t} \right) \right\} + \dot{\cal A}_{dyn,NG} \left( {\cal A}^{t} \right)$    
$\displaystyle + \dot{\cal A}_{dyn,dis }\left( \hat{\cal A}^{t+\Delta t} \right) + \dot{\cal A}_{phy,pred}\left( \bar{\cal A}^{t-\Delta t} \right) ,$ (3.104)

$\displaystyle {\cal A}^{t+\Delta t} = \hat{\cal A}^{t+\Delta t} + 2 \Delta t \d...
...) + 2 \Delta t \dot{\cal A}_{phy,adj}\left( \hat{\cal A}^{t+\Delta t} \right) ,$ (3.105)

$\displaystyle \bar{\cal A}^{t} = {\cal A}^{t} + \epsilon_f \left( \bar{\cal A}^{t-\Delta t} - 2 {\cal A}^{t} + {\cal A}^{t+\Delta t} \right).$ (3.106)

$B$3$3$G(B, $ \dot{\cal A}_{dyn,G} $, $ \dot{\cal A}_{dyn,NG} $ $B$O$=$l$>$l(B, $BNO3X2aDx$K$*$$$F(B semi-implicit $BK!$GJ,N%$5$l$?=ENOGH9`(B ($B@~7?9`(B) $B$HHs=ENOGH9`(B ($BHs@~7?9`(B), $ \dot{\cal A}_{dyn,dis} $ $B$O?eJ?3H;6$H%9%]%s%8AX$K$*$1$k8:?j9`(B, $ \dot{\cal A}_{phy,pred} $ $B$OM=Js7?$NJ*M}2aDx9`$G$"$k(B. $ \dot{\cal A}_{fric} $, $ \dot{\cal A}_{phy,adj} $ $B$O(B, $B$=$l$>$l(B $BK`;$G.$K$h$k2CG.9`$*$h$SD4@a7?$NJ*M}2aDx9`$G$"$k(B. $ \epsilon_f$ $B$O;~4V%U%#%k%?$N78?t$G$"$j(B, dcpam $B$G$NI8=`CM$O(B 0.05 $B$H$7$F$$$k(B.

3.5.1 $BNO3X2aDx$NJ}Dx<07O$N;~4V:9J,<0(B

$B$^$:(B, semi-implicit $BK!$rMQ$$$k$?$a$K(B, $BJ}Dx<07O$r(B $ T=\overline{T}_k$ $B$G$"$k(B $B@E;_>l$K4p$E$$$F@~7A=ENOGH9`$H$=$l0J30$N9`$KJ,N%$9$k(B. $B1tD>J}8~$N%Y%/%H%kI=8=(B $ \Dvect{A}=\{ A_{k} \}$, $B$*$h$S9TNsI=8=(B $ \underline{A}=\{ A_{kl} \}$ $B$rMQ$$$k$H(B, $BO"B3$N<0(B, $BH/;6J}Dx<0(B, $BG.NO3X$N<0$O(B,

$\displaystyle \DP{\tilde{\pi}^{m}_{n}}{t} = \left( \DP{\tilde{\pi}^{m}_{n}}{t} \right)^{\rm NG} - \Dvect{C} \cdot \tilde{\Dvect{D}}^{m}_{n} ,$ (3.107)

$\displaystyle \DP{\tilde{\Dvect{D}}^{m}_{n}}{t} = \left( \DP{\tilde{\Dvect{D}}^...
...^{m}_{n} ) + \underline{ \tilde{\cal D}_M }_{n}^{m} \tilde{\Dvect{D}}^{m}_{n} ,$ (3.108)

$\displaystyle \DP{\tilde{\Dvect{T}}^{m}_{n}}{t}$ $\displaystyle = \left( \DP{\tilde{\Dvect{T}}^{m}_{n}}{t} \right)^{\rm NG} - \un...
...}}^{m}_{n} + \underline{ \tilde{\cal D}_{H} }_{n}^{m} \tilde{\Dvect{T}}^{m}_{n}$ (3.109)

$B$H$J$k(B 3.1. $ \widetilde{( \hspace{0.5cm} )}^{m}_{n}$$B$d(B $ \widetilde{[ \hspace{0.5cm} ]}^{m}_{n}$ $B$H$$$C$?I=5-$K$D$$$F$O(B 2.5$B@a$N(B (2.10), (2.15), (2.17) $B$r;2>H$N$3$H(B. $B$3$3$G(B, $BE:;z(B NG $B$NIU$$$?9`$O(B, $BHs=ENOGH9`$G$"$j(B, $B0J2<$N$h$&$KI=$5$l$k(B.

$\displaystyle \left( \DP{\tilde{\pi}^{m}_{n}}{t} \right)^{\rm NG} = \tilde{Z}^{m}_{n},$ (3.110)

\begin{align*}\begin{split}\left( \DP{\tilde{D}^{m}_{k,n}}{t} \right)^{\rm NG} &...
...um_{l=1}^{K} W_{kl} ( T_{v,l}-T_{l} ) \right] }^{m}_{n}, \end{split}\end{align*} (3.111)

\begin{align*}\begin{split}\left( \DP{\tilde{T_{k}}^{m}_{,n}}{t} \right)^{\rm NG...
...& \qquad + \widetilde{ \left[ H_{ijk} \right]^{m}_{n} }. \end{split}\end{align*} (3.112)

$B3F9`$O0J2<$NDL$j$G$"$k(B. $B4JC12=$N$?$a7PEY(B, $B0^EYJ}8~E:;z(B $ i,j$ $B$N(B $BI=5-$r>JN,$9$k(B.

$\displaystyle Z$ $\displaystyle = - \sum_{k=1}^{K} \Dvect{v}_{k} \cdot \nabla \pi \Delta \sigma_{k},$ (3.113)
\begin{align*}\begin{split}H_k & = T_{k}^{\prime} D_{k} \\ & \quad - \frac{1}{\D...
...lta \sigma_{K} + T'_{v,K} D_K \Delta \sigma_{K} \right], \end{split}\end{align*} (3.114)

\begin{align*}\begin{split}\dot{\sigma}^{\rm NG}_{k-1/2} &= - \sigma_{k-1/2} \le...
...k}^{K} \Dvect{v}_{l} \cdot \nabla \pi \Delta \sigma_{l}, \end{split}\end{align*} (3.115)

$\displaystyle \hat{T}_{k-1/2}' = \left\{ \begin{array}{ll} 0 , & \text{($k = 1$...
..., & \text{($k = 2, \cdots, K$)} \\ 0 , & \text{($k = K+1$)} \end{array} \right.$ (3.116)

$\displaystyle \hat{\overline{T}}_{k-1/2} = \left\{ \begin{array}{ll} 0 , & \tex...
..., & \text{($k = 2, \cdots, K$)} \\ 0 . & \text{($k = K+1$)} \end{array} \right.$ (3.117)

$B$^$?(B, $B=ENOGH9`$N%Y%/%H%k$*$h$S9TNs$O0J2<$N$H$*$j$G$"$k(B.

$\displaystyle C_{k}$ $\displaystyle = \Delta \sigma_{k} ,$ (3.118)
$\displaystyle W_{kl}$ $\displaystyle = C_{p} \alpha_{l} \delta_{k \geq l} + C_{p} \beta_{l} \delta_{k-1 \geq l} ,$ (3.119)
$\displaystyle G_{k}$ $\displaystyle = \hat{\kappa}_{k} C_{p} \overline{T}_{k} ,$ (3.120)
$\displaystyle \underline{h}$ $\displaystyle = \underline{Q}\underline{S} - \underline{R} ,$ (3.121)
$\displaystyle Q_{kl}$ $\displaystyle = \frac{1}{\Delta \sigma_{k}} ( \hat{\overline{T}}_{k-1/2} - \ove...
... \sigma_{k}} ( \overline{T}_{k} - \hat{\overline{T}}_{k+1/2} ) \delta_{k+1=l} ,$ (3.122)
$\displaystyle S_{kl}$ $\displaystyle = \sigma_{k-1/2} \Delta \sigma_{l} - \Delta \sigma_{l} \delta_{k \leq l } ,$ (3.123)
$\displaystyle R_{kl}$ $\displaystyle = - \left( \frac{ \alpha_{k} }{ \Delta \sigma_{k} } \Delta \sigma...
...a \sigma_{k} } \Delta \sigma_{l} \delta_{k+1 \leq l} \right) \overline{T}_{k} ,$ (3.124)
$\displaystyle (\tilde{ {\cal D}_{M,kl} } )_n^m$ $\displaystyle = - K_{HD} \left[ \left( \frac{-n(n+1)}{a^{2}} \right)^{N_D/2} - \left( \frac{2}{a^2} \right)^{N_D/2} \right] \delta_{k=l}$    
  $\displaystyle \hspace{1cm} - \gamma_{M,0,n}^m \left( \frac{\sigma_k}{\sigma_K} \right)^{N_{SL}} \delta_{k=l} \delta_{k \ge k_{SLlim}} .$ (3.125)
$\displaystyle (\tilde{ {\cal D}_{H,kl} } )_n^m$ $\displaystyle = - K_{HD} \left( \frac{-n(n+1)}{a^{2}} \right)^{N_D/2} \delta_{k=l}$    
  $\displaystyle \hspace{1cm} - \gamma_{H,0,n}^m \left( \frac{\sigma_k}{\sigma_K} \right)^{N_{SL}} \delta_{k=l} \delta_{k \ge k_{SLlim}} .$ (3.126)

$ \delta_{k \leq l}$ $B$O(B, $ k \leq l$ $B$,@.$jN)$D$H$-(B 1, $B$=$&$G$J$$$H$-(B 0 $B$H$J$k4X?t$G$"$k(B.

$B$J$*(B, $B12EYJ}Dx<0$K$O@~7?=ENOGH9`$,$J$$$?$a(B, $B$3$3$G$O<($5$J$$(B. 3.2

$B$3$l$i$NJ}Dx<0$K(B,

$B$rE,1~$9$k$H(B,

$\displaystyle \delta_{t} \tilde{\pi}^{m}_{n} = \left( \DP{\tilde{\pi}^{m}_{n}}{t} \right)^{\rm NG} - \Dvect{C} \cdot \overline{ \tilde{\Dvect{D}}^{m}_{n} }^{t} ,$ (3.127)

$\displaystyle \delta_{t} \tilde{\Dvect{D}}^{m}_{n}$ $\displaystyle = \left( \DP{\tilde{\Dvect{D}}^{m}_{n}}{t} \right)^{\rm NG} - \le...
...\underline{ \tilde{\cal D}_{M} }_{n}^{m} \tilde{\Dvect{D}}^{m,t+\Delta t}_{n} ,$ (3.128)

$\displaystyle \delta_{t} \tilde{\Dvect{T}}^{m}_{n} = \left( \DP{\tilde{\Dvect{T...
... \underline{ \tilde{\cal D}_{H} }_{n}^{m} \tilde{\Dvect{T}}^{m,t+\Delta t}_{n}.$ (3.129)

$B$H$J$k(B. $B$?$@$7(B,

$\displaystyle \delta_{t} {\cal A}$ $\displaystyle \equiv \frac{1}{2 \Delta t} \left( {\cal A}^{t+\Delta t} - {\cal A}^{t-\Delta t} \right) ,$ (3.130)
$\displaystyle \overline{\cal A}^{t}$ $\displaystyle \equiv \frac{1}{2} \left( {\cal A}^{t+\Delta t} + {\cal A}^{t-\Delta t} \right) = {\cal A}^{t-\Delta t} + \delta_{t} {\cal A} \Delta t .$ (3.131)

$B$G$"$k(B.

(3.127), (3.128), (3.129) $B$h$j(B, $ \overline{\tilde{\Dvect{D}}^{m}_{n}}^{t}$ $B$K$D$$$F@0M}$9$k$H(B,

\begin{align*}\begin{split}& \Biggl[ ( \underline{I}-2\Delta t \underline{ \tild...
...tilde{\pi}^{m}_{n}}{t} \right)^{\rm NG} \right\} \right] \end{split}\end{align*} (3.132)

$B$H$J$k(B. $B$3$3$G(B $ \underline{I}$$B$OC10L9TNs(B, $ \Dvect{C}^{T}$$B$O(B$ \Dvect{C}$$B$N(B $BE>CV%Y%/%H%k$G$"$k(B. (3.132) $B$r(B $ \overline{\tilde{\Dvect{D}}^{m}_{n}}^{t}$ $B$K$D$$$F2r$-(B,

$\displaystyle \tilde{\Dvect{D}}^{m,t+\Delta t}_{n} = 2\overline{\tilde{\Dvect{D}}^{m}_{n}}^{t} - \tilde{\Dvect{D}}^{m,t-\Delta t}_{n}$ (3.133)

$B$*$h$S(B, (3.127), (3.129) $B$K$h$j(B $ \hat{\cal A}^{t+\Delta t}$ $B$,5a$a$i$l$k(B.

3.6 $B;29MJ88%(B

Arakawa, A., Suarez, M. J., 1983: Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34-35.

Asselin, R. A., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487-490.

Bourke, W.P., 1988: Spectral methods in global climate and weather prediction models. Physically-Based Modelling and Simulation of Climates and Climatic Change. Part I., M.E. Schlesinger (ed.), Kluwer Academic Publishers, Dordrecht, 169-220.

Haltiner, G.J., Williams, R.T., 1980: Numerical Prediction and Dynamic Meteorology (2nd ed.). John Wiley & Sons, 477pp.

$B@P2,(B $B7=0l(B, 2004: $B%9%Z%/%H%kK!$K$h$k?tCM7W;;F~Lg(B . $BEl5~Bg3X=PHG2q(B, 232pp.



... $B$H$J$k(B3.1
$BG0$N$?$aCm5-$7$F$*$/$H(B, $ \tilde{\Dvect{\Phi}}^{m}_{s,n} =
\left( \tilde{\Phi}^{m}_{s,n}, \tilde{\Phi}^{m}_{s,n}, \cdots, \tilde{\Phi}^{m}_{s,n}\right)$ $B$G$"$k(B.
... $B$3$3$G$O<($5$J$$(B.3.2
$B$3$3$OK\Ev$OJ}Dx<0$r=q$/$Y$-$@$m$&(B. $B8e$G=q$/(B. (YOT, 2009/10/11)

next up previous
: 4. $BOG@1Bg5$$NJ*M}Dj?t(B : dcpam5 $B;YG[J}Dx<07O$H$=$NN%;62=(B : 2. $B:BI87O!&JQ498x<0(B
Takahashi $BJ?@.(B22$BG/(B2$B7n(B24$BF|(B