: 4. $BOG@1Bg5$$NJ*M}Dj?t(B
: dcpam5 $B;YG[J}Dx<07O$H$=$NN%;62=(B
: 2. $B:BI87O!&JQ498x<0(B
$B$3$N>O$G$ONO3X2aDx$N;YG[J}Dx<0$r5-$7(B, $B$=$N;YG[J}Dx<0$NN%;62=$r(B
$B9T$&(B.
$B$3$3$G=R$Y$kNO3X2aDx$H$O(B,
$BN.BN$N;YG[J}Dx<0$K$*$1$k30NO9`$r=|$$$?ItJ,$r;X$9(B.
$B30NO9`$G$"$kJ|MpN.3H;6$d1@$J$I$K4X$9$k2aDx$K$D$$$F$O(B
$BJL;f$r;2>H$N$3$H(B.
$BN%;62=$K$D$$$F$O(B, $B6u4V$K4X$9$kN%;62=$G$"$k1tD>N%;62=$H(B,
$B?eJ?N%;62=$NJ}K!$J$i$S$K;~4V$K4X$9$kN%;62=$r9T$&(B.
$B$3$3$G$ONO3X2aDx$N;YG[J}Dx<07O$r<($9(B.
$B$3$NJ}Dx<07O$N>\:Y$K4X$7$F$O(B, Haltiner and Williams (1980) $B$b$7$/$O(B
$BJL;f!X(B
$B;YG[J}Dx<07O$NF3=P$K4X$9$k;29M;qNA(B$B!Y(B
$B$N!XNO3X2aDx$N;YG[J}Dx<07O$NF3=P!Y$r;2>H$;$h(B.
$B$3$3$G(B, $BFHN)JQ?t$O0J2<$NDL$j$G$"$k(B.
$B$3$3$G(B,
$B$O5$05(B,
$B$OCOI=LL5$05$G$"$k(B.
$B$^$?(B
$B$G$"$k(B.
$B%b%G%k$G;~4VH/E8$r7W;;$9$k$3$H$H$J$kM=JsJQ?t$O0J2<$NDL$j$G$"$k(B.
$B$3$3$G(B,
 |
 |
(3.16) |
 |
 |
(3.17) |
 |
$BEl@>IwB.(B |
(3.18) |
 |
$BFnKLIwB.(B |
(3.19) |
$B$G$"$k(B.
$BN.@~4X?t(B
$B$HB.EY%]%F%s%7%c%k(B
$B$rF3F~$9$k$H(B,
,
,
,
$B$O$=$l$>$l0J2<$N$h$&$KI=$o$5$l$k(B.
$B3F;~4V%9%F%C%W$G?GCGE*$K5a$a$i$l$kJQ?t$O0J2<$NDL$j$G$"$k(B.
$B3F?eJ?3H;6(B(3.35)$B!A(B(3.38)
$B$K4X$7$F$O(B3.2.7$B@a$G@bL@$5$l$k(B.
$BDj?t$O0J2<$NDL$j$G$"$k(B.
 |
![$\displaystyle : \quad $BOG@1H>7B(B [\mathrm{m}],$](img196.png) |
(3.44) |
 |
![$\displaystyle : \quad $B4%AgBg5$$N5$BNDj?t(B [\mathrm{J\ kg}^{-1}\ \mathrm{K}^{-1}],$](img198.png) |
(3.45) |
 |
![$\displaystyle : \quad $B4%AgBg5$$NBg5$Dj05HfG.(B [\mathrm{J\ kg}^{-1}\ \mathrm{K}^{-1}],$](img200.png) |
(3.46) |
 |
![$\displaystyle : \quad $B%3%j%*%j%Q%i%a!<%?(B [\mathrm{s}^{-1}],$](img202.png) |
(3.47) |
 |
 |
(3.48) |
 |
 |
(3.49) |
$B1tD>N.$K4X$9$k6-3&>r7o$O(B
 |
(3.50) |
$B$G$"$k(B. $B$h$C$F(B(3.1) $B$+$i(B,
$BCOI=5$05$N;~4VJQ2=<0$H(B
$B7O$G$N1tD>B.EY(B
$B$r5a$a$k?GCG<0(B
$B$,F3$+$l$k(B.
3.2.7 $B?eJ?3H;6$H%9%]%s%8AX(B
$B?eJ?3H;6$H%9%]%s%8AX$K$*$1$k12EY$HH/;6$N;60o$O
 |
 |
(3.53) |
 |
 |
(3.54) |
 |
 |
(3.55) |
 |
 |
(3.56) |
$B$3$3$G(B,
,
$B$O$=$l$>$l?eJ?3H;6$H%9%]%s%8AX$K$*$1$k(B
$B;60o$rI=$9(B.
$B?eJ?3H;69`$O(B, $B
$B$N7A$G7W;;$9$k(B.
![$\displaystyle {\cal D_{HD}}(\zeta) = - K_{HD} \left[ (-1)^{N_D/2} \nabla^{N_D} - \left( \frac{2}{a^2} \right)^{N_D/2} \right] \zeta ,$](img218.png) |
(3.57) |
![$\displaystyle {\cal D_{HD}}(D) = - K_{HD} \left[ (-1)^{N_D/2} \nabla^{N_D} - \left( \frac{2}{a^2} \right)^{N_D/2} \right] D ,$](img219.png) |
(3.58) |
 |
(3.59) |
 |
(3.60) |
$B>.$5$J%9%1!<%k$KA*BrE*$J?eJ?3H;6$rI=$9$?$a(B,
$B47Nc$H$7$F(B
$B$K$O(B 4
16 $B$rMQ$$$k$3$H$,B?$$(B.
$B%9%]%s%8AX$K$*$1$k1?F0NL$N;60o9`$O(B, $BEl@>[email protected],$r8:?j$5$;$k>l9g$H$5$;$J$$>l9g$N(B 2 $BDL$j$N(B
$B7W;;K!$rF3F~$9$k(B.
$BEl@>[email protected],$b8:?j$5$;$k>l9g$K$O(B,
$B$H$J$k(B. $B$3$3$G(B,
$B$O%9%]%s%8AX$K$*$1$k1?F0NL$N8:?j78?t$G$"$k(B.
$BEl@>[email protected],$r8:?j$5$;$J$$>l9g$K$O(B,
$B$H$J$k(B. $B$3$3$G(B,
$B$O(B, $BEl@>J?6Q$rI=$9(B.
$B%9%]%s%8AXFb$N29EY>qMp$N8:?j$K$O0J2<$N9`$rF3F~$9$k(B.
 |
 |
(3.65) |
$B$3$3$G(B,
$B$O%9%]%s%8AX$K$*$1$k29EY>qMp$N8:?j78?t$G$"$k(B.
$B8:?j78?t(B
,
$B$N(B
$B0MB8@-$K0lHL7A$O$J$$$,(B, dcpam $B$G$O(B
$B2<$N$h$&$J(B
$B0MB8@-$r9MN8$9$k(B.
 |
(3.66) |
 |
(3.67) |
$B$3$3$G(B,
,
,
,
$B$O$=$l$>$l(B,
$B$K$*$1$k8:?j78?t(B,
$B0MB8@-$N;X?t(B, $B%9%]%s%8AX$N(B
$B2<8B$N(B
$B$G$"$k(B.
dcpam $B$G$O(B,
$B$O%b%G%k:G>eAX$N(B
$B$H$7$F$$$k(B.
$B$3$3$G$O;YG[J}Dx<0$r1tD>J}8~$KN%;62=$9$k(B.
Arakawa and Suarez(1983) $B$K=>$C$F(B,
(3.1)$B!A(B(3.6)
$B$r1tD>J}8~$K:9J,$K$h$C$FN%;62=$9$k(B.
$B3FJ}Dx<0$NN%;62=I=8=$O
$B$3$3$G(B,
 |
(3.71) |
 |
(3.72) |
 |
(3.73) |
$B$3$3$G(B,
$B$G$"$j(B,
$B$OCOI=LL9bEY$G$"$k(B.
$B$3$3$G(B,
 |
(3.79) |
 |
(3.80) |
 |
(3.84) |
$B$3$3$G(B,
 |
(3.85) |
$B$G$"$j(B,
 |
(3.86) |
$B$3$3$G(B,
$B$3$3$G$O;YG[J}Dx<0$r?eJ?N%;62=$9$k(B.
$B?eJ?J}8~$NN%;62=$O%9%Z%/%H%kJQ49K!$rMQ$$$k(B (Bourke, 1988).
$BHs@~7A9`$O3J;RE@>e$G7W;;$9$k(B.
$B3FJ}Dx<0$N%9%Z%/%H%kI=8=$O0J2<$N$h$&$K$J$k(B.
$B%9%Z%/%H%kI=8=$K4X$9$k5-9f$N0UL#$K$D$$$F$O(B
2.5$B@a$r;2>H$5$l$?$$(B.
$B$=$N>\:Y$K$D$$$F$OBh(BA$B>O(B
$B$r;2>H$;$h(B.
$B$J$*(B, $B4JC12=$N$?$a(B, $BItJ,E*$K1tD>J}8~E:;z(B
$B$r>JN,$9$k(B.
 |
 |
(3.91) |
$B$3$3$G(B,
 |
(3.92) |
$B$3$3$G(B,
$B$3$3$G(B,
$B$O%9%]%s%8AX$rE,1~$9$k2<8B$N(B
$B$G$"$k(B.
$B$^$?(B, $B%9%]%s%8AX$K$*$$$FEl@>[email protected],$b8:?j$5$;$k>l9g$K$O(B,
$B$G$"$j(B, $BEl@>[email protected],$r(B
$B8:?j$5$;$J$$>l9g$K$O(B,
 |
 |
(3.97) |
$B$G$"$k(B.
 |
(3.98) |
$B$3$3$G(B,
$B$G$"$k(B.
 |
(3.102) |
$B$3$3$G(B,
 |
 |
(3.103) |
$B$G$"$k(B.
$B$3$3$G$O;~4V@QJ,%9%-!<%`$K$D$$$F5-$9(B.
$B;~4V:9J,$K$O(B, $BJ#?t$NJ}K!$rAH$_9g$o$;$FMQ$$$k(B. $BMQ$$$kJ}K!$N(B
$B35MW$r0J2<$K<($9(B.
- $BNO3X2aDx(B
- $B?eJ?3H;6$*$h$S%9%]%s%8AX$K$*$1$k8:?j9`$K$O(B, $B8eJ}:9J,$rMQ$$$k(B.
- $B$=$NB>$N9`$K$O(B, leap frog $BK!$H(B Crank-Nicolson $BK!$rAH$_9g$o$;$?(B
semi-implicit $BK!(B
(Bourke, 1988) $B$rMQ$$$k(B.
- $BJ*M}2aDx(B
- $BM=Js7?$NJ*M}2aDx$K$O(B, $BA0J}:9J,$rMQ$$$k(B.
- $BD4@a7?$NJ*M}2aDx$O(B, semi-implicit $BK!$G$NNO3X2aDx@QJ,8e$K7W;;$5$l$?CM$r(B
$BMQ$$$F7W;;$9$k(B.
- $B;~4V%U%#%k%?(B
- $BNO3X2aDx(B, $BJ*M}2aDx$N$9$Y$F$N7W;;8e$K(B, $BNO3X2aDx$GMQ$$$F$$$k(B
leap frog $BK!$r5/8;$H$9$k7W;;%b!<%IM^@)$N$?$a$N;~4V%U%#%k%?!<(B (Asselin,
1972) $B$rE,1~$9$k(B.
$B$3$NJ}K!$O(B, $BM=JsJQ?t$r(B
$B$HI=$9$H(B, $B0J2<$N(B 3 $B<0$GI=8=$5$l$k(B.
 |
|
 |
(3.104) |
 |
(3.105) |
 |
(3.106) |
$B$3$3$G(B,
,
$B$O$=$l$>$l(B,
$BNO3X2aDx$K$*$$$F(B semi-implicit $BK!$GJ,N%$5$l$?=ENOGH9`(B ($B@~7?9`(B) $B$HHs=ENOGH9`(B ($BHs@~7?9`(B),
$B$O?eJ?3H;6$H%9%]%s%8AX$K$*$1$k8:?j9`(B,
$B$OM=Js7?$NJ*M}2aDx9`$G$"$k(B.
,
$B$O(B, $B$=$l$>$l(B
$BK`;$G.$K$h$k2CG.9`$*$h$SD4@a7?$NJ*M}2aDx9`$G$"$k(B.
$B$O;~4V%U%#%k%?$N78?t$G$"$j(B, dcpam $B$G$NI8=`CM$O(B 0.05 $B$H$7$F$$$k(B.
$B$^$:(B, semi-implicit $BK!$rMQ$$$k$?$a$K(B, $BJ}Dx<07O$r(B
$B$G$"$k(B
$B@E;_>l$K4p$E$$$F@~7A=ENOGH9`$H$=$l0J30$N9`$KJ,N%$9$k(B.
$B1tD>J}8~$N%Y%/%H%kI=8=(B
,
$B$*$h$S9TNsI=8=(B
$B$rMQ$$$k$H(B, $BO"B3$N<0(B, $BH/;6J}Dx<0(B,
$BG.NO3X$N<0$O(B,
 |
(3.107) |
 |
(3.108) |
 |
 |
(3.109) |
$B$H$J$k(B
3.1.
$B$d(B
$B$H$$$C$?I=5-$K$D$$$F$O(B
2.5$B@a$N(B
(2.10),
(2.15), (2.17)
$B$r;2>H$N$3$H(B.
$B$3$3$G(B,
$BE:;z(B NG $B$NIU$$$?9`$O(B, $BHs=ENOGH9`$G$"$j(B,
$B0J2<$N$h$&$KI=$5$l$k(B.
$B3F9`$O0J2<$NDL$j$G$"$k(B. $B4JC12=$N$?$a7PEY(B, $B0^EYJ}8~E:;z(B
$B$N(B
$BI=5-$r>JN,$9$k(B.
 |
(3.115) |
 |
(3.116) |
 |
(3.117) |
$B$^$?(B, $B=ENOGH9`$N%Y%/%H%k$*$h$S9TNs$O0J2<$N$H$*$j$G$"$k(B.
 |
 |
(3.118) |
 |
 |
(3.119) |
 |
 |
(3.120) |
 |
 |
(3.121) |
 |
 |
(3.122) |
 |
 |
(3.123) |
 |
 |
(3.124) |
 |
![$\displaystyle = - K_{HD} \left[ \left( \frac{-n(n+1)}{a^{2}} \right)^{N_D/2} - \left( \frac{2}{a^2} \right)^{N_D/2} \right] \delta_{k=l}$](img353.png) |
|
|
 |
(3.125) |
 |
 |
|
|
 |
(3.126) |
$B$O(B,
$B$,@.$jN)$D$H$-(B 1, $B$=$&$G$J$$$H$-(B 0 $B$H$J$k4X?t$G$"$k(B.
$B$J$*(B, $B12EYJ}Dx<0$K$O@~7?=ENOGH9`$,$J$$$?$a(B, $B$3$3$G$O<($5$J$$(B.
3.2
$B$3$l$i$NJ}Dx<0$K(B,
- $B?eJ?3H;6$H%9%]%s%8AX$K$*$1$k8:?j9`$K$O8eB`:9J,(B
- $B$=$NB>$N9`$K$O(B, leap frog $BK!$HCf?4:9J,$rAH$_9g$o$;$?(B semi-implicit $BK!(B
$B$rE,1~$9$k$H(B,
$B$H$J$k(B. $B$?$@$7(B,
$B$G$"$k(B.
(3.127), (3.128), (3.129)
$B$h$j(B,
$B$K$D$$$F@0M}$9$k$H(B,
$B$H$J$k(B. $B$3$3$G(B
$B$OC10L9TNs(B,
$B$O(B
$B$N(B
$BE>CV%Y%/%H%k$G$"$k(B.
(3.132)
$B$r(B
$B$K$D$$$F2r$-(B,
 |
(3.133) |
$B$*$h$S(B, (3.127), (3.129)
$B$K$h$j(B
$B$,5a$a$i$l$k(B.
- Arakawa, A., Suarez, M. J., 1983:
Vertical differencing of the primitive equations
in sigma coordinates.
Mon. Wea. Rev., 111, 34-35.
- Asselin, R. A., 1972:
Frequency filter for time integrations.
Mon. Wea. Rev., 100, 487-490.
- Bourke, W.P., 1988:
Spectral methods in global climate and weather prediction models.
Physically-Based Modelling and Simulation of Climates
and Climatic Change. Part I.,
M.E. Schlesinger (ed.), Kluwer Academic Publishers, Dordrecht,
169-220.
- Haltiner, G.J., Williams, R.T., 1980:
Numerical Prediction and Dynamic Meteorology (2nd ed.).
John Wiley & Sons, 477pp.
- $B@P2,(B $B7=0l(B, 2004:
$B%9%Z%/%H%kK!$K$h$k?tCM7W;;F~Lg(B .
$BEl5~Bg3X=PHG2q(B, 232pp.
- ...
$B$H$J$k(B3.1
-
$BG0$N$?$aCm5-$7$F$*$/$H(B,
$B$G$"$k(B.
- ... $B$3$3$G$O<($5$J$$(B.3.2
-
$B$3$3$OK\Ev$OJ}Dx<0$r=q$/$Y$-$@$m$&(B. $B8e$G=q$/(B. (YOT, 2009/10/11)
: 4. $BOG@1Bg5$$NJ*M}Dj?t(B
: dcpam5 $B;YG[J}Dx<07O$H$=$NN%;62=(B
: 2. $B:BI87O!&JQ498x<0(B
Takahashi
$BJ?@.(B22$BG/(B2$B7n(B24$BF|(B