next up previous
: 4 $B%@%9%H$NM"Aw%b%G%k(B : Two dimensional anelastic model : 2 $BBg5$%b%G%k(B


3 $BMpN.%b%G%k(B

3.1 $BMpN.%Q%i%a%?%j%

$BMpN.3H;678?t(B $K$ $B$O(B Klemp and Wilhelmson (1978) $B$K=>$$MpN.1?F0%(%M%k%.!<(B $\varepsilon $ $B$+$i7W;;$9$k(B. $BG.$KBP$9$k3H;678?t$O1?F0NL$KBP$9$k3H;678?t(B $B$KEy$7$$$H$9$k(B.

    $\displaystyle \DD{\varepsilon }{t} = BP + SP + D(\varepsilon )
- \frac{C_{\epsilon }}{l}\varepsilon ^{3/2},$ (10)
    $\displaystyle K=C_{m}\sqrt{\varepsilon }l.$ (11)

$B$3$3$G(B $C_{\epsilon}=C_{m}=0.2$, $BP, SP$ $B$O$=$l$>$lIbNO$H%7%"!<$K$h$kMp(B $BN.%(%M%k%.!<@[email protected]`$G(B

$\displaystyle BP$ $\textstyle =$ $\displaystyle -\frac{g}{\Theta _{0}}K\DP{(\theta +\Theta _{0})}{z},$ (12)
$\displaystyle SP$ $\textstyle =$ $\displaystyle 2K\left[ \left(\DP{u}{x}\right)^{2} +
\left(\DP{w}{z}\right)^{2} ...
...eft( \DP{u}{z} + \DP{w}{x} \right)
+ K\left( \DP{u}{z} + \DP{w}{x} \right)^{2},$ (13)

$B$HI=$5$l$k(B. $l$ $B$O:.9g5wN%$G%b%G%k$N1tD>3J;R4V3V$+9bEY$N$I$A$i$+>.$5$$J}(B $B$NCM$rM?$($k(B.


\begin{displaymath}
l =\mbox{max}(\Delta z,z).
\end{displaymath}

(10)$B1&JUBh(B 4 $B9`$OMpN.%(%M%k%.!<$N;60o$rI=$9(B. $B$3$N9`$+$i;60o2CG.(B $Q_{dis}$ $B$,7W;;$5$l$k(B.

\begin{displaymath}
Q_{dis} = \frac{C_{\epsilon }}{lc_{p}}\varepsilon ^{3/2}.
\end{displaymath} (14)

3.2 $BCOI=%U%i%C%/%9%Q%i%a%j%

$BCOI=$+$i$N1?F0NL$HG.$N%U%i%C%/%9(B $F_{u}, F_{\theta }$ $B$O(B Louis (1979) $B$N(B $B%Q%i%a%?%j%

$\displaystyle F_{u}$ $\textstyle =$ $\displaystyle - \rho _{0}C_{D}\vert u_{z=z1}\vert u_{z=z_{1}},$ (15)
$\displaystyle F_{\theta }$ $\textstyle =$ $\displaystyle \rho _{0}C_{D}\vert u_{z=z1}\vert(T_{sfc}-T_{z=z1}).$ (16)

$B$3$3$G(B $u_{z=z1}, T_{z=z1}$ $B$O%b%G%k:G2 $B$G$N?eJ?Iw$H29EY(B, $T_{sfc}$ $B$OCOI=LL29EY$G$"$k(B. $B%P%k%/78?t(B $C_{D}$ $B$O(B


\begin{displaymath}
C_{D} = \left\{
\begin{array}{lcl}
C_{Dn}\left( 1 -
\fra...
...Ri}_{B})^{2}}& for & \mbox{Ri}_{B} \geq 0,
\end{array}\right.
\end{displaymath} (17)

$B$+$i7W;;$5$l$k(B. $B$3$3$G(B

\begin{displaymath}
C_{Dn} = \left(\frac{k}{\ln (z_{1}/z_{0})}\right)^{2},
\qu...
... = 0.74\cdot ab\left(\frac{z_{1}}{z_{0}}\right)^{\frac{1}{2}},
\end{displaymath} (18)

$B$G$"$j(B, $k$ $B$O%+%k%^%sDj?t(B, $z_{0}$ $B$OCOI=LLAFEY$G$"$k(B. $\mbox{Ri}_{B}$ $B$O%P%k%/%j%A%c!<%I%=%s?t$G(B,


\begin{displaymath}
\mbox{Ri}_{B} \equiv \frac{gz_{1}(\Theta _{sfc}-\Theta _
{z=z1})}{\overline{\Theta }_{z=z1}u_{z=z1}},
\end{displaymath} (19)

$B$H$7$FI>2A$5$l$k(B. $B$3$3$G(B $\Theta _{z=z1}, \overline{\Theta }_{z=z1}$ $B$O(B $B%b%G%k:G2 $B$OCOI=LL$N290L(B ($=T_{sfc}$)$B$G$"$k(B.

$B%Q%i%a!<%?(B

$BCOI=%U%i%C%/%9%Q%i%a%j%

$BI=(B 2: $BCOI=%U%i%C%/%9%Q%i%a%j%
$B%Q%i%a!<%?(B $BI8=`CM(B $BHw9M(B
$k$ 0.35  
$z_{0}$ 1 cm Sutton et al., (1978)


next up previous
: 4 $B%@%9%H$NM"Aw%b%G%k(B : Two dimensional anelastic model : 2 $BBg5$%b%G%k(B
Odaka Masatsugu $BJ?@.(B19$BG/(B4$B7n(B25$BF|(B