next up previous
: 2.3 $B@EE*0BDjEY(B : 2.2 $BCGG.29EY8:N((B : 2.2.1 $B4%AgCGG.29EY8:N((B

2.2.2 $B<>=aCGG.29EY8:N((B

$dX$ $B$r%b%kJ,N($HJ,05$N4X?t$H$7$FI=$9$H0J2<$N$h$&$K$J$k(B.

$\displaystyle dX = \Dinv{p} de - \left( \frac{e}{p^{2}} \right) dp.$     (29)

$B$?$@$7(B $e$ mail protected],$NK0OB>x5$05$G$"$k(B. $B$3$N<0$K%/%i%&%8%&%9!&%/%i%Z%$(B $B%m%s$N<0(B
$\displaystyle de = \frac{e \lambda dT}{R T^{2}},$     (30)

$B$rBeF~$7$FJQ7A$9$k$H(B,
$\displaystyle dX$ $\textstyle =$ $\displaystyle \Dinv{p} de - \frac{e}{p^{2}} dp,$  
  $\textstyle =$ $\displaystyle \Dinv{p} \left( \frac{e \lambda dT}{R T^{2}} \right)
- \frac{e}{p^{2}} \left( - \frac{ M p g}{R T} dz \right) ,$  
  $\textstyle =$ $\displaystyle \frac{e}{p} \frac{\lambda}{ R_{v} T^{2}} dT
+ \frac{e}{p} \frac{M g}{ R T} dz ,$  
  $\textstyle =$ $\displaystyle \frac{ \lambda X }{ R T^{2}} dT
+ \frac{M g X}{ R T} dz .$ (31)

$B$H$J$k(B.

(20) $B<0$K(B (31) $B<0$rBeF~$9$k$3$H$G<>=aCGG.29EY8:N($,5a$^$k!%(B

    $\displaystyle c_{p}dT + M g dz + \lambda dX = 0 ,$  
    $\displaystyle c_{p} dT + M g dz +
\lambda
\left(\frac{\lambda X }{ R T^{2}} dT
+ \frac{M g X}{ R T} dz \right) = 0,$  
    $\displaystyle c_{p}
\left( 1+ \frac{ \lambda^{2} X}{ c_{p} R T^{2}} \right) dT
+ M g \left( 1 + \frac{ \lambda X}{R T} \right) dz
= 0,$  
    $\displaystyle \DD{T}{z} = - \frac{M g}{c_{p}}
\left(
\frac{ 1 + \frac{ \lambda X}{R T}}
{ 1 + \frac{ \lambda^{2} X}{ c_{p} R T^{2}} }
\right).$ (32)

$BJ?6QJ,;RNL$HJ?6QHfG.$r(B (13), (14) $B<0$rMQ$$(B $B$FI=8=$9$k$H(B, $B<>=aCGG.29EY8:N($O0J2<$N$h$&$KJQ7A$G$-$k(B.
$\displaystyle \DD{T}{z} = - \frac{M_{d} g}{{c_{p}}_{d}}
\left\{
\frac{ 1 + \fra...
...\frac{ \lambda X}{R T}}
{ 1 + \frac{ \lambda^{2} X}{ c_{p} R T^{2}} }
\right)
.$     (33)

$B$5$i$K(B (32), (33) $B$rJQ7A$9$k$3$H$G(B $B29EY$N05NOHyJ,$O0J2<$N$h$&$K=q$1$k(B.
    $\displaystyle \DD{T}{p} = \frac{R T}{c_{p} p}
\left(
\frac{ 1 + \frac{ \lambda X}{R T}}
{ 1 + \frac{ \lambda^{2} X}{ c_{p} R T^{2}} }
\right),$ (34)
    $\displaystyle \DD{T}{p} = \frac{R T}{{c_{p}}_{d} p}
\left\{
\Dinv{ 1 + \frac{( ...
... \frac{ \lambda X}{R T}}
{ 1 + \frac{ \lambda^{2} X}{ c_{p} R T^{2}} }
\right).$ (35)

$B$5$i$K=>[email protected],$,>/$J$$$H$9$k6a;w<0$r5a$a(B, mail protected],$,B?$$$H$9$k6a;w<0$bJ;$;$FF3=P$9$k(B. $B$=$NF3=P$O0J2<$N(B $BDL$j$G$"$k(B.

mail protected],$,>/$J$$6a;w(B
 
(32) $B<0$K$*$$$F==J,$K6E=L@[email protected],$N>/$J$$>l9g(B, $B$D$^$j(B
$\displaystyle M \approx M_{d}, \;\;\;
c_{p} \approx {c_{p}}_{d}, \;\;\;
\frac{ \lambda X }{R T } \ll 1, \;\;\;
\frac{ \lambda^{2} X }{ c_{p} R T^{2} } \ll 1,$     (36)

$B$r9M$($k(B. $B$=$N>l9g$K$O(B,
$\displaystyle \DD{T}{z}$ $\textstyle \approx$ $\displaystyle - \frac{M_{d} g}{{c_{p}}_{d}}
\left( 1 + \frac{ \lambda X}{R T} \right)
\left( 1 - \frac{ \lambda^{2} X}{ {c_{p}}_{d} R
T^{2}} \right) ,$  
  $\textstyle \approx$ $\displaystyle - \frac{M_{d} g}{{c_{p}}_{d}}
\left\{ 1 - \frac{\lambda X}{ {c_{p}}_{d} T}
\left( \frac{ \lambda}{ R T}
- \frac{{c_{p}}_{d}}{R} \right) \right\},$ (37)

$B$H6a;w$9$k$3$H$,$G$-$k(B. $BC"$7(B $X$ $B$K4X$9$k(B 2 $B/NL$O==J,$K>.$5$$$b$N$H$7$FL5;k$7$?(B.
mail protected],$,B?$$6a;w(B
 
(32) $B$K$*$$$F==J,$K6E=L@[email protected],$NB?$$>l9g(B, $B$9$J$o$A(B
$\displaystyle M \approx M_{v}, \;\;\;
c_{p} \approx {c_{p}}_{v}, \;\;\;
\frac{ \lambda X }{R T } \gg 1, \;\;\;
\frac{ \lambda^{2} X }{ c_{p} R T^{2} } \gg 1,$     (38)

$B$N>l9g$K$O(B,
$\displaystyle \DD{T}{z}$ $\textstyle \approx$ $\displaystyle - \frac{M_{v} g}{{c_{p}}_{v}}
\frac{\frac{ \lambda X}{R T}}
{\frac{ \lambda^{2} X}{ {c_{p}}_{v} R
T^{2}} } ,$  
  $\textstyle =$ $\displaystyle -
\frac{M_{v} g T}{\lambda}$ (39)

$B$H6a;w$9$k$3$H$,$G$-$k(B.


next up previous
: 2.3 $B@EE*0BDjEY(B : 2.2 $BCGG.29EY8:N((B : 2.2.1 $B4%AgCGG.29EY8:N((B
SUGIYAMA Ko-ichiro $BJ?@.(B17$BG/(B8$B7n(B21$BF|(B