next up previous
: 10. $BK0OBHf<>(B : dcpam5 $B;YG[J}Dx<07O$H$=$NN%;62=(B : 8. $B>xH/!&6E7k$K$h$kCOI=LL5$05JQ2=(B


9. $B1tD>%U%#%k%?!<(B

9.1 $BGX7J$HL\E*(B

$BB@M[Dj?t$rA}2C$5$;$?7W;;$r9T$C$?$H$3$m(B 2-grid noise $B$,@8$8$?(B. $B$3$N%N%$%:$N?6I}$OHs>o$KBg$-$/$J$j7W;;$,GKC>$9$k(B.

$B$3$N%N%$%:$r>C$9$?$a$K%U%#%k%?!<$r$+$1$k(B. $BJ*M}E*

9.2 $B4pK\E*$J

  1. $BD4@a$N$?$a$N4pK\29EY>l$r7h$a$k(B.
  2. $BD4@a$r9T$&ItJ,$r7h$a$k(B. $B6qBNE*$K$O(B, $BA4AX$+0lIt$+(B. $B0lIt$H$7$?$i$I$NNN0h$+(B
  3. $B29EY9=B$$r4pK\>l$rD4@a$9$k(B. $B$=$N8e(B, $B8m:9$NJd@5$r9T$&(B.

9.3 $BD4@a$N$?$a$N4pK\29EY>l(B

$B%.%6%.%[email protected],$rl$H$7$?$$(B. $B$=$3$G!V4pK\>l!W$O

$\displaystyle T_{Bk} = \frac{T_{k+1/2} + T_{k-1/2}}{2}$     (9.1)

$B$3$3$G(B, $ 1 \leq k \leq KMAX$

9.4 $BD4@a$9$kItJ,$N7hDj(B

  1. $BA4AX$N>l9g(B
    $B2?$b9M$($:$KA4It$d$k(B
  2. $B%.%6%.%6ItJ,$N$_D4@a$9$k>l9g(B
    $B0J2<$N<0$rK~$?$9(B level $ k$ $B$O%.%6%.%6$JE@$HH=Dj$9$k(B.
    $\displaystyle (T_{k} - T_{k-1}) \cdot (T_{k+1} - T_{k}) < 0$     (9.2)

    $B

9.5 $BD4@a$*$h$S8m:9$NJd@5(B

$B@a$N%?%$%H%k$,@5$7$/$J$$$h$&$J5$$,$9$k(B. $B!V8m:9$NJd@5!W$G$O$J$$$J$"(B.

  1. $BA4AX$GD4@a$r9T$$(B, $BA4AX$K8m:9$r$P$i$^$/>l9g(B.

    $B$3$l$K$D$$$F$OL$ $B$3$l$O$b$C$H$b0BD>$JD4@aJ}K!$G$"$k(B. $BD4@aA0$N29EY$NCM$r(B $ T_{k}$, $BD4@a8e$r(B $ \hat{T}_{k}$ $B$H$9$k(B.

    $B2?$b9M$($:$KD4@a$9$k$J$i(B

    $\displaystyle \hat{T}_{k} = T_{k} + S_{grst} (T_{Bk} - T_{k})$     (9.3)

    $B29EYJQ2=NL$O(B
    $\displaystyle \Delta T_{k} \equiv \hat{T}_{k} - T_{k} = S_{grst} (T_{Bk} - T_{k})$     (9.4)

    $B$3$N>l9g(B, $BA4BN$G(B
    $\displaystyle \sum^{KMAX}_{k=1} c_v \Delta T_{k} \Delta p_{k}
= \sum^{KMAX}_{k=1} c_v S_{grst} (T_{Bk} - T_{k}) (p_s \Delta \sigma_{k})$     (9.5)

    $B$NFbIt%(%M%k%.!<$r%3%i%`$KM?$($F$7$^$&$3$H$K$J$k(B. $B$3$l$,8m:9$K$J$k(B.

    $BD4@a$NA08e$GA4BN$NFbIt%(%M%k%.!

    $\displaystyle \sum^{KMAX}_{k=1} \Delta T_{k} \Delta p_{k} = 0$     (9.6)

    $B$H$7$F$d$i$J$1$l$P$$$1$J$$(B. $B$?$@$7(B, $B$3$3$GHfG.$,0lDj$N>l9g$r2>Dj$7$?(B.

    $B$3$l$r2r7h$9$k$b$C$H$b0BD>$JJ}K!$O>e$N8m:9$rA4AX$K$P$i$^$/$3$H(B. $B$3$N>l9g(B, $B29EY$ND4@aNL$O0J2<$N<0$GM?$($i$l$k(B.

    $\displaystyle \hat{T}_{k}
= T_{k} + S_{grst} (T_{Bk} - T_{k})
- \frac{
\sum^{KM...
...k=1} S_{grst} (T_{Bk} - T_{k}) \Delta p_{k}
}{
\sum^{KMAX}_{k=1} \Delta p_{k}
}$     (9.7)

    $B$3$&$9$k$H(B
    $\displaystyle \sum^{KMAX}_{k=1} \hat{T}_{k} \Delta p_{k}
= \sum^{KMAX}_{k=1}
\l...
...- T_{k}) \Delta p_{k}
}{
\sum^{KMAX}_{k=1} \Delta p_{k}
}
\Delta p_{k}
\right\}$     (9.8)

    $B$H$J$k(B.

  2. $BA4AX$GD4@a$7(B, $B8m:9$r6I=jE*$K2r>C$7$F$$$/>l9g(B

    AGCM5 $B$N>l9g$@$H(B, p2grstA.F

    3 $BE@%H%j%*$G9M$((B, $B$=$3$G@8$8$?8m:9$r$=$N(B 3 $BAX$K$P$i$^$/(B $B$3$H$K$9$k(B. $B2<$+$i=g$K(B, $B0J2<$N<0$G29EY$ND4@aNL$r7W;;$7$F$$$/(B.

    $\displaystyle \hat{T}_{k-1}$ $\displaystyle =$ $\displaystyle T_{k-1} + S_{grst} (T_{Bk-1} - T_{k-1})
- \frac{
\sum^{k+1}_{k=k-1} S_{grst} (T_{Bk} - T_{k}) \Delta p_{k}
}{
\sum^{k+1}_{k=k-1} \Delta p_{k}
},$ (9.9)
    $\displaystyle \hat{T}_{k}$ $\displaystyle =$ $\displaystyle T_{k} + S_{grst} (T_{Bk} - T_{k})
- \frac{
\sum^{k+1}_{k=k-1} S_{grst} (T_{Bk} - T_{k}) \Delta p_{k}
}{
\sum^{k+1}_{k=k-1} \Delta p_{k}
},$ (9.10)
    $\displaystyle \hat{T}_{k+1}$ $\displaystyle =$ $\displaystyle T_{k+1} + S_{grst} (T_{Bk+1} - T_{k+1})
- \frac{
\sum^{k+1}_{k=k-1} S_{grst} (T_{Bk} - T_{k}) \Delta p_{k}
}{
\sum^{k+1}_{k=k-1} \Delta p_{k}
}$ (9.11)

    $B$3$N(B $ \hat{T}$ $B$rMQ$$$F(B, 1 $B$D>e$K>e$,$j(B,
    $\displaystyle \hat{\hat{T}}_{k}$ $\displaystyle =$ $\displaystyle \hat{T}_{k} + S_{grst} (T_{Bk} - \hat{T}_{k})
- \frac{
\sum^{k+2}...
..._{grst} (T_{Bk} - \hat{T}_{k}) \Delta p_{k}
}{
\sum^{k+2}_{k=k} \Delta p_{k}
},$ (9.12)
    $\displaystyle \hat{\hat{T}}_{k+1}$ $\displaystyle =$ $\displaystyle \hat{T}_{k+1} + S_{grst} (T_{Bk+1} - \hat{T}_{k+1})
- \frac{
\sum...
..._{grst} (T_{Bk} - \hat{T}_{k}) \Delta p_{k}
}{
\sum^{k+2}_{k=k} \Delta p_{k}
},$ (9.13)
    $\displaystyle \hat{T}_{k+2}$ $\displaystyle =$ $\displaystyle T_{k+1} + S_{grst} (T_{Bk+2} - T_{k+2})
- \frac{
\sum^{k+2}_{k=k} S_{grst} (T_{Bk} - \hat{T}_{k}) \Delta p_{k}
}{
\sum^{k+2}_{k=k} \Delta p_{k}
}$ (9.14)

    $B$?$@$7(B, $B1&JU(B 3 $B9`L\$NJ,;R$NOB$K$*$$$F(B $ k$ $B$,(B $ k+2$ $B$N>l9g$O(B, $ \hat{T}_{k+2}$ $B$G$O$J$/(B $ T_{k+2}$ $B$G$"$k(B($B$^$@D4@a$r9T$C$F$$$J$$$N$G(B).

    $B0J>e$r(Blevel $B$r(B 1 $B$D$E$D>e$,$j$J$,$i=gHV$K9T$&(B.

  3. $B%.%6%.%6ItJ,$@$1$rD4@a$78m:9$r(B 3 $BE@$4$H$K$P$i$^$/(B

    $B2<$+$i=g$K(B

    $\displaystyle (T_{k} - T_{k-1}) \cdot (T_{k+1} - T_{k}) < 0$     (9.15)

    $B$H$J$kItJ,$N(B 3 $BE@%H%j%*=P(B (2) $B$HF1$8$3$H$r9T$&(B.

  4. $B%.%6%.%6ItJ,$@$1$rD4@a$7(B, $B8m:9$r%.%6%.%6ItJ,A4BN$K(B $B6QEy$K$P$i$^$/>l9g(B

    $BO"B3$7$F%.%6%.%6ItJ,$K$J$C$F$$$k$H$3$m$rH=Dj$7(B (1) $B$HF1$8$3$H$r$9$k(B. $B2<5-$N$h$&$KH=Dj$9$k(B.

    1. $B2<$+$i=g$KEP$C$F$$$C$F=i$a$F(B
      $\displaystyle (T_{k} - T_{k-1}) \cdot (T_{k+1} - T_{k}) < 0$     (9.16)

      $B$H$J$C$?$H$3$m$G(B, $ (k-1)$ level $B$,%.%6%.%6ItJ,$NDl(B $B$HH=Dj$9$k(B.
    2. $B%.%6%.%6ItJ,$GEP$C$F$$$C$F(B
      $\displaystyle (T_{k} - T_{k-1}) \cdot (T_{k+1} - T_{k}) \geq 0$     (9.17)

      $B$H$J$C$?$i(B, $ k$ level $B$,%.%6%.%6ItJ,$NE70f(B.
    $B$3$N$h$&$KH=Dj$5$l$?%.%6%.%6ItJ,A4BN$K8m:9$r$P$i$^$/(B.


next up previous
: 10. $BK0OBHf<>(B : dcpam5 $B;YG[J}Dx<07O$H$=$NN%;62=(B : 8. $B>xH/!&6E7k$K$h$kCOI=LL5$05JQ2=(B
Yasuhiro MORIKAWA $BJ?@.(B20$BG/(B7$B7n(B30$BF|(B