: 5 $BCO5eDj?t(B
: DCAPM2 $BBh(B1$BIt(B $B?tM}%b%G%k2=(B
: 3 $B;YG[J}Dx<0!&NO3X2aDx(B
$B;YG[J}Dx<07O$NF3=P(B
3
33
3
33
$BA4Bg5$$O(B, $B$H$b$KM}A[5$BN$G$"$k4%Ag6u5$$*$h$S?e>x5$$+$i@.$k:.9gBg5$$H$9(B
$B$k(B. $B1@?eNL$OL5;k$9$k(B. $B$^$?(B, $B?e>x5$NL$,A4Bg5$$K@j$a$k3d9g$O>.$5$$$H2>Dj(B
$B$7(B, $BA4Bg5$$NDj05HfG.$r4%AgBg5$$NCM$G6a;w$9$k(B.
$B?e>x5$NL$NJ]B8$K$D$$$F$O(B, $B6E7k$*$h$S>xH/$K$h$k@8@.>CLG$r9MN8$9$k(B. $B$7$+(B
$B$7(B, $B$3$NNL$,A4Bg5$$KM?$($k8z2L$O>.$5$$$H$7(B, $BA4Bg5$$N
$B=ENO2CB.EY$OCO5eCf?4$K8~$$$F$$$k$H2>Dj$9$k(B. $B$^$?(B, $B1?F0$N?eJ?%9%1!<%k$,(B
$B1tD>%9%1!<%k$h$j$b$+$J$jBg$-$$1?F0$rA[Dj$7(B, $B@ENO3XJ?9U6a;w$r9T$J$&(B. $B$5(B
$B$i$K(B, $B1?F0$OCO5eI=LLIU6a$K8B$i$l$k$3$H$r2>Dj$7$F6a;w$r9T$J$&(B.
3
33
3
33
$BJ}Dx<07O$O(B 6 $BK\$NM=JsJ}Dx<0$H(B 1 $BK\$N?GCGJ}Dx<0$+$i$J$k(B. $BM=JsJ}Dx<0$O(B,
$BA4x5$NL$N<0(B, $B1?F0J}Dx<0(B(3 [email protected],(B), $BG.NO3X$N<0$+$i$J$k(B.
$B$3$l$i$O(B, $B$=$l$>$l(B, $BA4x5$NL$NJ]B8B'(B, $BA4uBVJ}Dx<0$rMQ$$$k(B.
4
$B!*!*Cm0U(B: $B$3$N(B Appendix $BCf$G$OF3=P$NET9g>e(B, $B4%Ag6u5$$N5$BNDj?t$r(B
$BDj05HfG.$r(B
$B$H$7(B, $BA4Bg5$$N5$BNDj?t$r(B
$B$H$*$$$?(B. $B$7$+$7(B, $BK\J8(B
$BCf$G$O(B, $B4%Ag6u5$$N5$BNDj?t$r(B
, $BDj05HfG.$r(B
$B$HI=5-$7$F$$$k(B.
$B4%Ag6u5$(B, $B?e>x5$$N>uBVJ}Dx<0$O$=$l$>$l(B
$B$G$"$k(B. $B$3$3$G(B
,
$B$O$=$l$>$l4%Ag6u5$$*$h$S?e(B
$B>x5$$K4X$9$kNL$G$"$k$3$H$r<($9(B. $B$7$?$,$C$F(B, $BA405(B
$B$O(B,
$B$H$J$k(B. $B$3$3$G(B,
$B$OHf<>(B, $B$G$"$j(B,
,
$B$G$"$k(B. $B$7$?$,$C$F(B,
$BA4Bg5$$N>uBVJ}Dx<0$O(B,
 |
(35) |
$B$?$@$7(B,
$B$G$"$k(B. $B$"$k$$$O(B, $B2>29EY(B
$B$rMQ$$$l$P(B,
 |
(36) |
$BA4Bg5$$Nx5$$N@8@.>CLG$rL5;k$9$l$P(B,
5
 |
(37) |
$B$"$k$$$O(B, $B%i%0%i%s%8%e7A<0$G5-=R$9$l$P(B,
 |
(38) |
$B?e>x5$L)EY(B
$B$KBP$9$kCLGNL$r(B
$B$H$9$l$P(B,
 |
(39) |
$BHf<>(B
$B$K4X$9$k<0$O(B, $B86M}E*$K$O<0(B(
) $B$H<0(B(A.9) $B$+$iF@$k$3$H$,$G$-$k(B. $B$7$+$7(B,
$B:#$N>l9g(B, $B<0(B(A.7)$B$G?e>x5$$N@8@.>CLG$rL5;k$7$?$N$G(B,
$B@5$7$/$OF@$i$l$J$$(B. $B$=$3$GHf<>$N@8@.>CLG$K4X$9$k9`$r2~$a$F(B
$B$HDj(B
$B5A$9$k(B.
 |
(40) |
$B1?F0NLJ]B8B'$O(B, $B?e>x5$$N@8@.>CLG$K$H$b$J$&1?F0NLJQ2=$rL5;k$9$l$P
 |
(41) |
$B$3$3$G(B,
$B$O05NO(B,
$B$OG4@-1~NO%F%s%=%k(B,
$B$OCO5e(B
$B$N0zNO$K$h$k%]%F%s%7%c%k(B
6 ,
$B$O$=$NB>$N30NO9`$G$"$k(B. $B$"$k$$$OO"B3$N<0(B
$B$rMQ$$$F%i%0%i%s%8%e7A<0$G5-=R$9$k$H(B
 |
(42) |
$B$H$J$k(B. $B$3$3$G(B, $BG4@-9`$H30NO9`$r(B
$B$H$*$-(B, $B$5$i$K%Y%/%H%kI=<($9$k(B
 |
(43) |
$BC10L $B$HFbIt%((B
$B%M%k%.!<(B
$B$*$h$\%]%F%s%7%c%k%(%M%k%.!<(B
$B$NOB$GI=(B
$B8=$5$l$k(B. $B$3$N;~4VJQ2=N($N<0$O(B, $B?e>x5$$N@8@.>CLG$K$h$k1F6A$rL5;k$9$l$P(B,
![\begin{displaymath}
\DP{}{t}
\left[ \rho
\left( \frac{1}{2} \Dvect{v}^2
+...
...v_j
+ p v_j - \sigma_{ij}v_i
\right]
= \rho Q + F'_i v_i,
\end{displaymath}](img120.png) |
(44) |
$B$G$"$k(B. $B$3$3$G(B,
$B$O303&$+$i$N2CG.N($G$"$k(B. $B0lJ}(B, $B1?F0%(%M%k%.!<$H%](B
$B%F%s%7%c%k%(%M%k%.!<$NOB$NJ]B8<0$O(B, $B1?F0NLJ]B8<0(B (
) $B$K(B
$B$r$+$1O"B3$N<0$rMQ$$$FJQ7A$9$k$3$H$GF@$i$l$k(B. $BJQ7A$N:]$K(B
$B$O(B
$B$G$"$k$H$7$F$$$k(B.
7
 |
(45) |
$B$H$J$k(B. $B<0(B (A.14) $B$+$i<0(B (
) $B$r0z$-5n$k$H(B, $B
 |
(46) |
$BO"B3$N<0$rMQ$$$F%i%0%i%s%8%e7A<0$K=q$-D>$;$P(B
 |
(47) |
$B$3$3$G(B, $B303&$+$i$N2CG.$N9`$HG4@-$K$h$k2CG.$N9`$r$^$H$a$F(B
$B$H$*$$(B
$B$?(B.
$BFbIt%(%M%k%.!<$r29EY$rMQ$$$FI=8=$9$k$H(B
$B$G$"(B
$B$k(B. $B$5$i$K>uBVJ}Dx<0(B (A.5) $B$rMQ$$$F<0(B (A.17)
$B$rJQ7A$9$k(B.
$B$G$"$k$3$H$KCm0U$9$l$P(B
 |
(48) |
$B$H$J$k(B. $B$3$3$G(B,
$B$r4%Ag6u5$$NDj05HfG.(B
($BDj?t(B) $B$G6a;w$9$k$H(B
8$B
 |
(49) |
8
88
8
88
$BJ}Dx<07O$r(B, $B0lDj$N<+E>3QB.EY(B
$B$G2sE>$9$k2sE>7O$KJQ49$9(B
$B$k(B.
$B47@-7O$K$*$1$k;~4VHyJ,$rE:;z(B a $B$G(B, $B2sE>7O$rE:;z(B r $B$GI=8=$9$k(B. $B$3$N$H$-(B,
$BG$0U$N%9%+%i!<(B
$B$KBP$7$F(B,
 |
(50) |
$B$,@.$j$?$D(B.
9
$BG$0U$N%Y%/%H%k(B
$B$KBP$9$k47@-7O$*$h$S2sE>7O$G$NHyJ,$O
 |
(51) |
($B>ZL@(B) $BG$0U$N%Y%/%H%k(B
$B$r(B, $B47@-7O$G$O(B
|
 |
 |
(52) |
$B$HI=$7(B, $B2sE>7O$G$O(B
|
 |
 |
(53) |
$B$HI=$9(B.
$B;~4VHyJ,$r$H$k$H(B
($B>ZL@=*$j(B)
$B$3$3$G(B
(
$B$O0LCV%Y%/%H%k(B ) $B$H$*$1$P47(B
$B@-7O$G$NB.EY(B
($B$3$l$^$G$N(B
) $B$O2sE>7O$G$NB.EY(B
$B$rMQ$$$F
 |
(55) |
$B$5$i$K(B, $B<0(B(A.21) $B$G(B
$B$H$*(B
$B$1$P(B, $BB.EY$N;~4VHyJ,9`$O(B
 |
(56) |
$B$HJQ49$G$-$k(B.
$BJQ49$N<0(B (A.26) $B$rMQ$$$F1?F0J}Dx<0$r2sE>7O$G5-=R$9$k(B.
 |
(57) |
$B$3$3$G(B, $B=ENO2CB.EY(B
$B$rDj5A$9$l$P(B, $B1?F0J}Dx<0$O(B
 |
(58) |
$B$H$J$k(B.
$BO"B3$N<0$*$h$SG.NO3X$N<0$K$*$$$F$O(B, $B%i%0%i%s%8%eHyJ,$,:nMQ$7$F$$$kL)EY(B
$B$*$h$S29EY$O:BI8JQ49$KL54X78$J%9%+%i!<$G$"$k$?$a(B, $B$=$N;~4VHyJ,$N7A$OJQ(B
$B$o$i$J$$(B. $BO"B3$N<0$O(B, $BB.EY>l$NH/;6$r4^$`$,(B, $B$3$l$O:BI8JQ49$K$h$C$F$bCM(B
$B$OJQ$o$i$J$$(B. $B$7$?$,$C$F(B, $B$3$l$i$N<0$O7A$rJQ$($J$$(B.
10
10
1010
10
1010
$B0lHL$ND>8r6J@~:BI8(B
$B$K$*$$$F(B, $B%9%+%i!<(B
$B$*$h$S%Y%/%H%k(B
$B$O $B$O3F<4J}8~$N5,LO0x;R$G$"$j(B, $B3F<4J}8~$N4pDl%Y%/%H%k(B
$B$O(B
$B$H$9$k(B.
 |
(59) |
![\begin{displaymath}
\Ddiv \Dvect{A}
= \frac{1}{h_1 h_2 h_3}
\left[ \DP{}{\x...
...\xi_2} ( h_1 h_3 A_2)
+ \DP{}{\xi_3} ( h_1 h_2 A_3)
\right],
\end{displaymath}](img175.png) |
(60) |
![\begin{displaymath}
\nabla^2 \bullet
= \frac{1}{h_1 h_2 h_3}
\left[ \DP{}{\...
...eft( \frac{h_1 h_2}{h_3} \DP{\bullet}{\xi_3} \right)
\right],
\end{displaymath}](img176.png) |
(61) |
![\begin{displaymath}
\Drot \Dvect{A}
= \left( \frac{1}{h_2 h_3}
\left[ \DP{(h_...
...DP{(h_2 A_2)}{\xi_1} - \DP{(h_1 A_1)}{\xi_2} \right]
\right),
\end{displaymath}](img177.png) |
(62) |
 |
(63) |
![\begin{displaymath}
\DD{\Dvect{v}}{t}
= \sum^3_{k=1} \Dvect{e}_k
\left[ \DP{v...
...{v_k}{h_k} \frac{1}{h_j} \DP{h_k}{\xi_j} \right) v_j
\right].
\end{displaymath}](img179.png) |
(64) |
$B=ENO2CB.EY(B
$B$,CO5eCf?4$r8~$$$F$$$k$H$_$J$7$F(B, $BJ}Dx<07O$r5e(B
$B:BI8(B
$B$KJQ49$9$k(B. $B2sE>(B
$B7O$K8GDj$7$?D>8rD>@~:BI8(B
$B$H$N4X78$O(B
$B$G$"$k(B. $B$3$3$G(B,
$B$O0^EY(B,
$B$O7PEY(B,
$B$O1tD>:BI8$G$"(B
$B$k(B. $B$^$?(B, $B4pDl%Y%/%H%k$r(B
, $BB.EY%Y%/%H%k$r(B
$B$GI=$9(B.
$B3FJ}8~$N5,LO0x;R(B( scale factor )$B$O(B
 |
(68) |
$B$7$?$,$C$F(B, $B%9%+%i!<(B
$B$*$h$S%Y%/%H%k(B
$B$K4X$9$kHyJ,I=8=$O
 |
(69) |
![\begin{displaymath}
\Ddiv \Dvect{A}
= \frac{1}{r^2 \cos \varphi}
\left[ r \...
...hi A_{\varphi})
+ \cos \varphi \DP{}{r} ( r^2 A_r )
\right],
\end{displaymath}](img195.png) |
(70) |
![\begin{displaymath}
\nabla^2 \bullet
= \frac{1}{r^2 \cos \varphi}
\left[ \D...
...}{r} \left( r^2 \cos \varphi \DP{\bullet}{r} \right)
\right],
\end{displaymath}](img196.png) |
(71) |
 |
(73) |
$B<+E>3QB.EY%Y%/%H%k$NI=8=$O
$B$7$?$,$C$F(B, $B1?F0J}Dx<0$O(B
$BO"B3$N<0$O(B
 |
(80) |
$BG.NO3X$N<0$O(B
 |
(81) |
$B>uBVJ}Dx<0$O(B
 |
(82) |
$B?e>x5$$N<0$O(B
 |
(83) |
$B$3$3$G(B,
 |
(84) |
$B$G$"$k(B.
10
1010
10
1010
10
1010
$B1tD>J}8~$N1?F0J}Dx<0$KBP$7(B, $B@ENO3XJ?9U6a;w$r9T$J$&(B.
 |
(85) |
$B$3$N$H$-(B, $B1?F0%(%M%k%.!<$NJ]B8B'$r9MN8$7$F(B, $B?eJ?J}8~$N1?F0J}Dx<0$KBP$7(B
$B$F$b6a;w$r;\$9(B. $B1?F0%(%M%k%.!<$N<0$O(B, $B1?F0J}Dx<[email protected],$K$=$l$>$l(B
$B$r$+$1$k$3$H$GF@$i$l$k(B.
$B%3%j%*%j$NNO$*$h$S%a%H%j%C%/9`$OF1$8HV9f$N$b$NF1;N$GBG$A>C$7$"$C$F(B, $B1?(B
$BF0%(%M%k%.!<$N;~4VJQ2=$K4sM?$7$J$$$3$H$,$o$+$k(B.
11$B$7$?$,$C$F(B, $B@ENO3XJ?9U6a;w$N:]$K1tD>@.J,$N<0$+$iMn$H$7$?9`(B(2),(4),(5)
[email protected],$N<0$N9`$b
$B$3$3$G(B,
$B$O%3%j%*%j%Q%i%a!<%?(B
$B$G$"(B
$B$k(B.
$BBg5$$NAX$,CO5eH>7B$KHf$Y$FGv$$$3$H$r2>Dj$7(B, $BJ}Dx<0Cf$N(B
$B$r(B, $BBeI=E*(B
$B$JCO5eH>7B(B
$B$G$*$-$+$($k(B. $B$^$?(B,
$B$K$h$kHyJ,$O$9$Y$F3$H49bEY(B
$B$K$h$kHyJ,$G$*$-$+$($k(B. $B$3$N$H$-4pACJ}Dx<0$O
 |
(89) |
 |
(90) |
 |
(91) |
 |
(92) |
 |
(93) |
 |
(94) |
 |
(95) |
$B$3$3$G(B,
 |
(96) |
 |
(97) |
11
1111
11
1111
$B@ENO3XJ?9U$N$b$H$G$O(B, $B5$05(B
$B$O1tD>:BI8(B
$B$KBP$7C1D48:>/$9$k4X?t$G(B
$B$"$k(B. $B$=$3$G(B, $B1tD>:BI8$r(B
$B$+$i(B, $BCOI=LL5$05(B
$B$G5,3J2=$7$?5$05:B(B
$BI8(B,
 |
(98) |
$B$KJQ49$9$k(B.
$B$H(B
$B$N4X78$O(B, $B@ENO3XJ?9U$N<0$rJQ7A$7$FF@$i$l$k(B.
 |
(99) |
- $B:BI8$+$i(B
- $B:BI8$X$NJQ498x<0$r<($9(B.
$B1tD>HyJ,(B
$B?eJ?HyJ,(B
$B;~4VHyJ,(B
$B%i%0%i%s%8%eHyJ,$O$3$l$i$rMQ$$$F(B,
$B$3$3$G(B,
-$B:BI81tD>B.EY(B
$B$rDj5A$9$k(B.
 |
(105) |
$B<0(B (A.69) $B$r=ENO%]%F%s%7%c%k(B
$B$rMQ$$$F=q$1$P(B,
 |
(106) |
$B?eJ?$N05NO8{G[$O(B, $B<0(B(A.71)$B$*$h$S<0(B(A.72) $B$r(B
$B$KBP$7$FE,MQ$7(B, $B<0(B(A.68) $B$rMQ$$$l$P
![\begin{displaymath}
\frac{1}{\rho} \left( \DP{p}{\varphi} \right)_z
= R^d T_v \DP[][\sigma]{\pi}{\varphi} + \DP{\Phi}{\varphi}.
\end{displaymath}](img270.png) |
(108) |
$B$3$3$G(B
$B$G$"$k(B. $B$7$?$,$C$F(B, $B1?F0J}Dx<[email protected],$O(B,
 |
(109) |
 |
(110) |
$BB.EY$NH/;6$O(B,
$B$3$3$G(B,
![\begin{displaymath}
\Ddiv{\Dvect{v}_H}
\equiv \frac{1}{a \cos \varphi}
\DP[]...
...hi} \left( \DP{}{\varphi} (v \cos
\varphi ) \right)_{\sigma}.
\end{displaymath}](img282.png) |
(112) |
$B$f$($K(B,
- $B:BI8O"B3$N<0$O
$B$7$?$,$C$F(B
$B$rMQ$$$F5-=R$9$l$P
 |
(114) |
$B<0(B ( A.64 ) $B$N1&JUBh(B1$B9`$O
$B$3$3$G(B,
 |
(116) |
$B$7$?$,$C$F(B, $BG.NO3X$N<0$O$D$.$N$h$&$K$J$k(B.
 |
(117) |
$B$3$3$G(B,
$B:BI8$K$*$1$k6-3&>r7o$K$D$$$F=R$Y$k(B.
 |
(118) |
$B$9$J$o$A(B,
$B$OI=LLCO7A$rI=$9(B. $B$3$N6-3&>r7o$rMQ$$$F(B, $B@ENO3XJ?9U(B
$B$N<0$r1tD>@QJ,$9$k$3$H$G(B, $BG$0U$N(B
$B$K$*$1$k9bEY(B
$B$r5a$a$k(B
$B$3$H$,$G$-$k(B.
 |
(119) |
$B$3$3$G$O=R$Y$J$$(B.
$BO"B3$N<0$r1tD>J}8~$K(B
$B$+$i(B
$B$^$G@QJ,$7(B,
$B$K4X$9$k6-3&>r7o$rMQ$$$l$P(B, $B798~J}Dx<0$H$h$P$l$k(B
$B$N;~4VJQ2=$K4X$9$k<0$,F@$i$l$k(B.
 |
(120) |
$B$3$N<0$rMQ$$$l$P(B,
$B$N>pJs$,$J$/$F$bCOI=LL5$05$N;~4VJQ2=(B
$B$r5a$a$k$3$H$,$G$-$k(B. $B$J$*(B, $B$3$3$G$O8e$N$3$H$r9M$($F(B
$B$r(B
$B$HI=8=$7$F$$$k(B.
$B$K$D$$$F$O
$B1tD>B.EY(B
$B$O(B, $BO"B3$N<0$r1tD>J}8~$K(B
$B$+$i(B
$B$^$G@QJ,$9$k$3$H$G?GCGE*$KF@$i$l$k(B.
 |
(121) |
11
1111
11
1111
$B12EY(B:
 |
(122) |
$BH/;6(B:
 |
(123) |
$B1?F0J}Dx<0$N(B
$B$N<0$K(B
$B$r(B
$B:nMQ$7(B,
$B$N<0$K(B
$B$r(B
$B:nMQ$7:9$r$H$C$FJQ7A$9$l$P
$B1?F0J}Dx<0$N(B
$B$N<0$K(B
$B$r:n(B
$BMQ$7(B,
$B$N<0$K(B
$B$r:nMQ$7OB$r$H$C$FJQ7A$9$k$H
$B$3$3$G(B,
$B;YG[J}Dx<07O$K$*$1$kJQ?t$r(B, $B%b%G%kFbIt$GMQ$$$F$$$kJQ?t$KJQ49$9$k(B. $B$^$:(B,
$B$rF3F~$9$k(B. $B$^$?B.EY>l(B
$B$O(B
,
$B$KJQ49$9$k(B.
12 $B$3$N$H$-(B, $B?eJ?Iw$N12EY(B
$B$HH/;6(B
$B$O $B$*$h$S(B
$B$HDj5A$9$k(B.
$B?eJ?Iw$K$h$k0\N.$O
$B?eJ?Iw$K$h$k0\N.$N$b$&$R$H$D$N5-=R$rO"B3$N<0$NJQ49$N$?$a$K<($9(B.
$B$3$l$i$rMQ$$$F(B, $BJ}Dx<07O$r
$BO"B3$N<0(B
13
 |
(132) |
$B12EYJ}Dx<0(B
$BH/;6J}Dx<0(B
$BG.NO3X$N<0(B
$B?e>x5$$N<0(B
$B2>29EY(B
$B$r $B$N$_$K0MB8$9$k>l(B
$B$H(B, $B$=$3$+$i$N$:[email protected],(B
$B$K$o$1$F5-=R$9$k(B.
$B12EYJ}Dx<0$G(B
$B$r4^$`9`$O
$BH/;6J}Dx<0$G(B
$B$r4^$`9`$O
$BG.NO3X$N<0$N1&JUBh(B1-3$B9`$O
$B0J>e$rMQ$$$FDx<07O$r5-=R$9$l$P
$BO"B3$N<0(B
 |
(140) |
$B@E?e05$N<0(B
 |
(141) |
$B1?F0J}Dx<0(B14
 |
(142) |
 |
(143) |
$B$3$3$G(B,
$BG.NO3X$N<0(B
$B?e>x5$$N<0(B
 |
(147) |
$B<0(B(A.17) $B$GF3F~$7$?(B
$B$+$iG4@-$K$h$k4sM?(B
$B$r:F$SJ,N%$7(B,
$B$H$9$k(B. $B0lHL$KG4(B
$B@-$O1?F0J}Dx<0$K$*$$$FE,Ev$J%Q%i%a%?%j%x5$$N<0$KBP$7$F$=$l$>$l?eJ?3H;69`(B
,
,
,
$B$r$D$1$k(B.
$B$3$N9`$NIU2C$O,
$B$r$=$l$>$l(B
,
$B$N$h$&$K$"$i$?$a$FCV$-$J$*$;$P(B, $B;Y(B
$BG[J}Dx<07O(B (3.1) -- (3.6) $B$rF@$k(B.
- ...
$BM}A[5$BN$N>uBVJ}Dx<0$rMQ$$$k(B.4
- $B4%Ag6u5$$H?e>x5$$O(B, $BF1$8B.EY$H29EY$r$b$D$3$H$r0EL[$N$&$A$K2>Dj(B
$B$7$F$$$k(B. $B$7$?$,$C$F(B, $B?e>x5$$K4X$9$k1?F0NLJ]B8B'$*$h$SA4%(%M%k%.!uBVJ}Dx<0$r9MN8$9$kI,MW$,$J$$(B.
- ... $B?e>x5$$N@8@.>CLG$rL5;k$9$l$P(B,5
-
$Bx5$<0$G$O@8@.>CLG$r4^$a$F$$$k(B. $B$7$?$,$C$F(B, $BA4Bg5$$Nx5$$N@8@.>CLG$,5/$-$F$bA4
- ...
$B$N0zNO$K$h$k%]%F%s%7%c%k(B6
- $B$3$l$O1s?4NO$r9MN8$7$J$$CO5e$N
- ... $B$G$"$k$H$7$F$$$k(B.7
-
$BF3=P$N2aDx$r<($9(B. $B:8JUBh(B1$B9`$HBh(B2$B9`$O
$B$^$?(B, $B:8JUBh(B4$B9`$O
- ... $B$G6a;w$9$k$H(B8
-
$B$3$N6a;w$K$O5?Ld$,;D$k(B. $B>uBVJ}Dx<0$K$*$$$F$O(B, $B5$BNDj?t(B
$B$r(B
$B$H(B
$B$9$k6a;w$O(B($B2>29EY(B
$B$rF3F~$9$k$3$H$G(B)$B9T$J$o$J$+$C$?(B.
$B$K$D$$(B
$B$F$@$16a;w$9$k$N$O6a;w$N%l%Y%k$K0l4S@-$,$J$$$h$&$K;W$o$l$k(B.
- ...
$B$,@.$j$?$D(B.9
-
$B$3$l$O<+L@$N$3$H$H$7$?$$(B. $B%9%+%i!<(B
$B$N:BI8JQ49$O:BI8JQ49%F%s%=%k(B
$B$K0MB8$7$J$$(B($B$GF1$8CM$r$H$k(B)$B$+$i$G$"$k(B. $B$J$*(B, Pedlosky (1987) $B$G$O(B, $B%Y(B
$B%/%H%k$NJQ498x<0$r;H$C$F%9%+%i!<$NJQ49$r>ZL@$7$F$$$k(B. $B$H$3$m$,%Y%/%H%k(B
$B$NJQ498x<0$G$O%9%+%i!<$NJQ498x<0$r;H$C$F$$$k$N$G(B, $B2?$,$J$s$@$+$o$+$i$J(B
$B$$(B.
$B0lJ}(B, $B%Y%/%H%k$N:BI8JQ49$O(B, $B:BI8JQ49%F%s%=%k$H$N@Q$GI=8=$5$l$k(B. $B$7$?$,$C(B
$B$F(B, $B:BI8JQ49%F%s%=%k<+BN$,;~4VJQ2=$9$k>l9g(B, $BEvA3%Y%/%H%k$N;~4VHyJ,$O:B(B
$BI8JQ49%F%s%=%k$N;~4VHyJ,$N1F6A$r
- ... $B$3$l$i$N<0$O7A$rJQ$($J$$(B.10
- $B$3$3$G;d$,5$$K$J$C$F$$$k$N$O(B, $B1?F0%(%M%k%.!7O$X(B
$B$N0\9T$K$h$C$F7A$rJQ$($k$3$H$G$"$k(B.
- ...
$BF0%(%M%k%.!<$N;~4VJQ2=$K4sM?$7$J$$$3$H$,$o$+$k(B.11
-
$B1s?4NO$r=ENO2CB.EY$+$iJ,N%$7$F%(%M%k%.!<$N<0$G9MN8$9$k$H(B, $B$3$N4sM?$O%-%c(B
$B%s%;%k$9$k$3$H$J$/;D$k(B.
- ... $B$KJQ49$9$k(B.12
$B$N$^$^$G$b12EY$dH/;6$K$9$l$P6K$G$NFC0[@-$r2sHr$G$-$k(B
$B$N$G$O$J$$$+(B?
- ...$BO"B3$N<0(B
13
- $BH/;6$O$9$Y$F(B
$B$rMQ$$$FI=8=$9$Y$-$@$m$&(B.
- ...
$B1?F0J}Dx<0(B14
- (2005/4/4 $B@PEO(B)
$B$N<0$N1&JUBh0l9`$NId9f$O@5(B
$B$7$$$+(B?
$B$N<0$N1&JUBhFs9`$NId9f$O@5$7$$$+(B?
: 5 $BCO5eDj?t(B
: DCAPM2 $BBh(B1$BIt(B $B?tM}%b%G%k2=(B
: 3 $B;YG[J}Dx<0!&NO3X2aDx(B
Morikawa Yasuhiro
$BJ?@.(B18$BG/(B7$B7n(B30$BF|(B