: A. $B;HMQ>e$NCm0U$H%i%$%;%s%95,Dj(B
: dcpam5 $B;YG[J}Dx<07O$NF3=P$K4X$9$k;29M;qNA(B
: 2. $B:BI87O$N
dcpam5$B$G$ONO3X7W;;$H$7$F5eLL0^EY7PEY:BI8(B, $B1tD>(B
$B:BI8$N(B
$B%W%j%_%F%#%VJ}Dx<07O$r2r$$$F$$$k(B. $B0J2<$G$O(B, $B$^$:A[Dj$9$kBg5$$K$D$$$F(B
$B$N2>Dj$r9T$C$?8e(B, $BA4x5$NL$N<0(B, $B1?F0J}Dx<0(B (3 [email protected],(B),
$BG.NO3X$N<0$N(B 6 $B$D$NJ}Dx<0$+$i(B, dcpam5$B$G3.8.5
$B@a(B $B$r;2>H$N$3$H(B.
dcpam5$B$G$OCO5eBg5$$rA[Dj$7(B,
$BA4Bg5$$O$H$b$KM}A[5$BN$G$"$k4%Ag6u5$$*$h$S?e>x5$$+$i@.$k:.9gBg5$$H$9$k(B.
$B1@?eNL$OL5;k$9$k(B. $B$^$?(B, $B?e>x5$NL$,A4Bg5$$K@j$a$k3d9g$O>.$5$$$H2>Dj(B
$B$7(B, $BA4Bg5$$NDj05HfG.$r4%AgBg5$$NCM$G6a;w$9$k(B.
$B?e>x5$NL$NJ]B8$K$D$$$F$O(B, $B6E7k$*$h$S>xH/$K$h$k@8@.>CLG$r9MN8$9$k(B. $B$7$+(B
$B$7(B, $B$3$NNL$,A4Bg5$$KM?$($k8z2L$O>.$5$$$H$7(B, $BA4Bg5$$N
$B=ENO2CB.EY$OOG@1Cf?4$K8~$$$F$$$k$H2>Dj$9$k(B. $B$^$?(B, $B1?F0$N?eJ?%9%1!<%k$,(B
$B1tD>%9%1!<%k$h$j$b$+$J$jBg$-$$1?F0$rA[Dj$7(B, $B@ENO3XJ?9U6a;w$r9T$J$&(B. $B$5(B
$B$i$K(B, $B1?F0$OOG@1I=LLIU6a$K8B$i$l$k$3$H$r2>Dj$7$F6a;w$r9T$J$&(B.
$BJ}Dx<07O$O(B 6 $BK\$NM=JsJ}Dx<0$H(B 1 $BK\$N?GCGJ}Dx<0$+$i$J$k(B. $BM=JsJ}Dx<0$O(B,
$BA4x5$NL$N<0(B, $B1?F0J}Dx<0(B(3 [email protected],(B), $BG.NO3X$N<0$+$i$J$k(B.
$B$3$l$i$O(B, $B$=$l$>$l(B, $BA4x5$NL$NJ]B8B'(B, $BA4uBVJ}Dx<0$rMQ$$$k(B
3.1.
$B!*!*Cm0U(B: $B$3$NIUO?Cf$G$OF3=P$NET9g>e(B, $B4%Ag6u5$$N5$BNDj?t$r(B
,
$BDj05HfG.$r(B
, $BA4Bg5$$N5$BNDj?t$r(B
$B$H$*$/(B.
$B$7$+$7(B, $B%b%G%k$N$B;YG[J}Dx<07O$H$=$NN%;62=(B$B!Y(B
$B$N!XNO3X2aDx!Y(B
$B$G$O(B, $B4%Ag6u5$$N5$BNDj?t$r(B
, $BDj05HfG.$r(B
$B$HI=5-$7$F$$$k(B
$B$N$GN10U$$$?$@$-$?$$(B.
$B4%Ag6u5$(B, $B?e>x5$$N>uBVJ}Dx<0$O$=$l$>$l(B
$B$G$"$k(B. $B$3$3$G(B
$B$O05NO(B,
$B$OL)EY(B,
$B$O5$BNDj?t(B,
$B$O29EY$G$"$j(B,
,
$B$O$=$l$>$l4%Ag6u5$$*$h$S?e>x5$$K(B
$B4X$9$kNL$G$"$k$3$H$r<($9(B. $B$7$?$,$C$F(B, $BA405(B
$B$O(B,
![\begin{align*}\begin{split}p & = (\rho^d R^d + \rho^v R^v) T \\ & = \rho R^d ( 1 + \epsilon_v q ) T \end{split}\end{align*}](img25.png) |
(3.3) |
$B$H$J$k(B. $B$3$3$G(B,
$B$OHf<>(B, $B$G$"$j(B,
,
$B$G$"$k(B. $B$7$?$,$C$F(B,
$BA4Bg5$$N>uBVJ}Dx<0$O(B,
$B$?$@$7(B,
$B$G$"$k(B. $B$"$k$$$O(B, $B2>29EY(B
$B$rMQ$$$l$P(B,
$B$HI=$5$l$k(B.
$BA4Bg5$$Nx5$$N@8@.>CLG$rL5;k$9$l$P(B
3.2,
$B$3$3$G(B,
$B$OIwB.$G$"$k(B.
$B%i%0%i%s%8%e7A<0$G5-=R$9$l$P(B,
![$\displaystyle \DD{\rho}{t} + \rho \Ddiv \Dvect{v} = 0.$](img35.png) |
(3.7) |
$B?e>x5$L)EY(B
$B$KBP$9$kCLGNL$r(B
$B$H$9$l$P(B,
$BHf<>(B
$B$K4X$9$k<0$O(B, $B86M}E*$K$O(B(
) $B$H(B(3.8) $B$+$iF@$k$3$H$,$G$-$k(B. $B$7$+$7(B,
$B:#$N>l9g(B, (3.6)$B$G?e>x5$$N@8@.>CLG$rL5;k$7$?$N$G(B,
$B@5$7$/$OF@$i$l$J$$(B. $B$=$3$GHf<>$N@8@.>CLG$K4X$9$k9`$r2~$a$F(B
$B$HDj(B
$B5A$9$k(B.
![$\displaystyle \DD{q}{t} = S_q.$](img41.png) |
(3.9) |
$B1?F0NLJ]B8B'$O(B, $B?e>x5$$N@8@.>CLG$K$H$b$J$&1?F0NLJQ2=$rL5;k$9$l$P
$B$3$3$G(B,
$B$OG4@-1~NO%F%s%=%k(B,
$B$OOG@1(B
$B$N0zNO$K$h$k%]%F%s%7%c%k(B
3.3,
$B$O$=$NB>$N30NO9`$G$"$k(B. $B$"$k$$$OO"B3$N<0(B
$B$rMQ$$$F%i%0%i%s%8%e7A<0$G5-=R$9$k$H(B
![$\displaystyle \rho \DD{v_i}{t} + \DP{p}{x_i} - \DP{\tau_{ij}}{x_j} + \rho \DP{\Phi^*}{x_i} = {\cal F}_i^{\prime }$](img46.png) |
(3.11) |
$B$H$J$k(B. $B$3$3$G(B, $BG4@-9`$H30NO9`$r(B
$B$H$*$-(B, $B$5$i$K%Y%/%H%kI=<($9$k(B.
![$\displaystyle \rho \DD{\Dvect{v}}{t} + \Dgrad p + \rho \Dgrad \Phi^* = \Dvect{\cal F}.$](img48.png) |
(3.12) |
$BC10L
$B$HFbIt%((B
$B%M%k%.!<(B
$B$*$h$S%]%F%s%7%c%k%(%M%k%.!<(B
$B$NOB$GI=(B
$B8=$5$l$k(B. $B$3$N;~4VJQ2=N($N<0$O(B, $B?e>x5$$N@8@.>CLG$K$h$k1F6A$rL5;k$9$l$P(B,
$B$G$"$k(B. $B$3$3$G(B,
$B$O30It$+$i$N2CG.N($G$"$k(B. $B0lJ}(B, $B1?F0%(%M%k%.!<$H%](B
$B%F%s%7%c%k%(%M%k%.!<$NOB$NJ]B8<0$O(B, $B1?F0NLJ]B8<0(B (
) $B$K(B
$B$r$+$1(B, $BO"B3$N<0$rMQ$$$FJQ7A$9$k$3$H$GF@$i$l$k(B
3.4.
$B$3$3$G(B, $BJQ7A$N:]$K$O(B
$B$G$"$k$H$7$F$$$k(B.
(3.13)$B$H(B
(3.14)
$B$H$N:9$r$H$k$H(B, $B
![$\displaystyle \DP{}{t} ( \rho \varepsilon ) + \DP{}{x_j} ( \rho \varepsilon v_j ) = - p \DP{v_j}{x_j} + \sigma_{ij} \DP{v_i}{x_j} + \rho Q .$](img65.png) |
(3.15) |
$BO"B3$N<0$rMQ$$$F%i%0%i%s%8%e7A<0$K=q$-D>$;$P(B
$B0J9_$G$O(B, $B30It$+$i$N2CG.$N9`$HG4@-$K$h$k2CG.$N9`$r(B
$B$^$H$a$F(B
$B$H$*$/$3$H$H$9$k(B.
$BFbIt%(%M%k%.!<$r29EY$rMQ$$$FI=8=$9$k$H(B
$B$G$"$k(B.
$B$ODj05HfG.$G$"$k(B.
$B$5$i$K>uBVJ}Dx<0(B (3.4) $B$rMQ$$$F(B(3.16)
$B$rJQ7A$9$k(B.
$B$G$"$k$3$H$KCm0U$9$l$P(B
![$\displaystyle \DD{C_p T}{t} = \frac{1}{\rho} \DD{p}{t} + Q^*,$](img71.png) |
(3.17) |
$B$H$J$k(B. $B$3$3$G(B,
$B$r4%Ag6u5$$NDj05HfG.(B
($BDj?t(B)
$B$G6a;w$9$k$H(B
3.5,
$B
![$\displaystyle \DD{T}{t} = \frac{1}{C_p^d \rho} \DD{p}{t} + \frac{Q^*}{C_p^d}.$](img91.png) |
(3.18) |
$B$3$3$G$O(B, $BJ}Dx<07O$r(B
$B0lDj$N<+E>3QB.EY(B
$B$G2sE>$9$k2sE>7O$KJQ49$9$k(B.
$B47@-7O$K$*$1$k;~4VHyJ,$rE:;z(B a $B$G(B, $B2sE>7O$rE:;z(B r $B$GI=8=$9$k(B. $B$3$N$H$-(B,
$BG$0U$N%9%+%i!<(B
$B$KBP$7$F(B,
![$\displaystyle \left( \DD{\psi}{t} \right)_{\rm a} = \left( \DD{\psi}{t} \right)_{\rm r}$](img94.png) |
(3.19) |
$B$,@.$j$?$D(B
3.6.
$BG$0U$N%Y%/%H%k(B
$B$KBP$9$k47@-7O$*$h$S2sE>7O$G$NHyJ,$O
($B>ZL@(B) $BG$0U$N%Y%/%H%k(B
$B$r(B, $B47@-7O$G$O(B
|
![$\displaystyle \Dvect{A} = \Dvect{i} A_x + \Dvect{j} A_y + \Dvect{k} A_z$](img97.png) |
(3.21) |
$B$HI=$7(B, $B2sE>7O$G$O(B
|
![$\displaystyle \Dvect{A} = \Dvect{i}' A'_x + \Dvect{j}' A'_y + \Dvect{k}' A'_z$](img98.png) |
(3.22) |
$B$HI=$9(B.
$B;~4VHyJ,$r$H$k$H(B
($B>ZL@=*$j(B)
$B$3$3$G(B
(
$B$O0LCV%Y%/%H%k(B ) $B$H$*$1$P47(B
$B@-7O$G$NB.EY(B
($B$3$l$^$G$N(B
) $B$O2sE>7O$G$NB.EY(B
$B$rMQ$$$F
![$\displaystyle \Dvect{v}_a = \Dvect{v} + \Dvect{\Omega} \times \Dvect{r}.$](img109.png) |
(3.24) |
$B$5$i$K(B, (3.20) $B$G(B
$B$H$*(B
$B$1$P(B, $BB.EY$N;~4VHyJ,9`$O(B
$B$HJQ49$G$-$k(B.
$BJQ49$N(B(3.25)$B$rMQ$$$F1?F0J}Dx<0$r2sE>7O$G5-=R$9$k(B.
![$\displaystyle \DD{\Dvect{v}}{t} = - \frac{1}{\rho} \Dgrad p - 2 \Dvect{\Omega} ...
...a} \times ( \Dvect{\Omega} \times \Dvect{r} ) + \Dgrad \Phi^* + \Dvect{\cal F}.$](img112.png) |
(3.26) |
$B$3$3$G(B, $B=ENO2CB.EY(B
$B$rDj5A$9$l$P(B, $B1?F0J}Dx<0$O(B
![$\displaystyle \DD{\Dvect{v}}{t} = - \frac{1}{\rho} \Dgrad p - 2 \Dvect{\Omega} \times \Dvect{v} + \Dvect{g} + \Dvect{\cal F}$](img114.png) |
(3.27) |
$B$H$J$k(B.
$BO"B3$N<0$*$h$SG.NO3X$N<0$K$*$$$F$O(B, $B%i%0%i%s%8%eHyJ,$,:nMQ$7$F$$$kL)EY(B
$B$*$h$S29EY$O:BI8JQ49$KL54X78$J%9%+%i!<$G$"$k$?$a(B, $B$=$N;~4VHyJ,$N7A$OJQ(B
$B$o$i$J$$(B. $BO"B3$N<0$O(B, $BB.EY>l$NH/;6$r4^$`$,(B, $B$3$l$O:BI8JQ49$K$h$C$F$bCM(B
$B$OJQ$o$i$J$$(B. $B$7$?$,$C$F(B, $B$3$l$i$N<0$O7A$rJQ$($J$$(B.
$B0lHL$ND>8r6J@~:BI8(B
$B$K$*$$$F(B, $B%9%+%i!<(B
$B$*$h$S%Y%/%H%k(B
$B$O $B$O3F<4J}8~$N5,LO0x;R$G$"$j(B, $B3F<4J}8~$N4pDl%Y%/%H%k(B
$B$O(B
$B$H$9$k(B.
![$\displaystyle \Dgrad \bullet$](img120.png) |
![$\displaystyle = \left( \frac{1}{h_1} \DP{\bullet}{\xi_1}, \frac{1}{h_2} \DP{\bullet}{\xi_2}, \frac{1}{h_3} \DP{\bullet}{\xi_3} \right),$](img121.png) |
(3.28) |
![$\displaystyle \Ddiv \Dvect{A}$](img122.png) |
![$\displaystyle = \frac{1}{h_1 h_2 h_3} \left[ \DP{}{\xi_1} ( h_2 h_3 A_1) + \DP{}{\xi_2} ( h_1 h_3 A_2) + \DP{}{\xi_3} ( h_1 h_2 A_3) \right],$](img123.png) |
(3.29) |
![$\displaystyle \nabla^2 \bullet$](img124.png) |
![$\displaystyle = \frac{1}{h_1 h_2 h_3} \left[ \DP{}{\xi_1} \left( \frac{h_2 h_3}...
... + \DP{}{\xi_3} \left( \frac{h_1 h_2}{h_3} \DP{\bullet}{\xi_3} \right) \right],$](img125.png) |
(3.30) |
![$\displaystyle \Drot \Dvect{A}$](img126.png) |
![$\displaystyle = \left( \frac{1}{h_2 h_3} \left[ \DP{(h_3 A_3)}{\xi_2} - \DP{(h_...
...{h_1 h_2} \left[ \DP{(h_2 A_2)}{\xi_1} - \DP{(h_1 A_1)}{\xi_2} \right] \right),$](img127.png) |
(3.31) |
![$\displaystyle \DD{\bullet}{t}$](img128.png) |
![$\displaystyle = \DP{\bullet}{t} + \frac{v_1}{h_1} \DP{\bullet}{\xi_1} + \frac{v_2}{h_2} \DP{\bullet}{\xi_2} + \frac{v_3}{h_3} \DP{\bullet}{\xi_3},$](img129.png) |
(3.32) |
![$\displaystyle \DD{\Dvect{v}}{t}$](img130.png) |
![$\displaystyle = \sum^3_{k=1} \Dvect{e}_k \left[ \DP{v_k}{t} + \sum^3_{j=1} \fra...
...h_j}{\xi_k} +\frac{v_k}{h_k} \frac{1}{h_j} \DP{h_k}{\xi_j} \right) v_j \right].$](img131.png) |
(3.33) |
$B=ENO2CB.EY(B
$B$,OG@1Cf?4$r8~$$$F$$$k$H$_$J$7$F(B, $BJ}Dx<07O$r5e(B
$B:BI8(B
$B$KJQ49$9$k(B. $B2sE>(B
$B7O$K8GDj$7$?D>8rD>@~:BI8(B
$B$H$N4X78$O(B
$B$G$"$k(B. $B$3$3$G(B,
$B$O0^EY(B,
$B$O7PEY(B,
$B$O1tD>:BI8$G$"(B
$B$k(B. $B$^$?(B, $B4pDl%Y%/%H%k$r(B
, $BB.EY%Y%/%H%k$r(B
$B$GI=$9(B.
$B3FJ}8~$N5,3J2=0x;R(B (scale factor) $B$O(B
![$\displaystyle h_\lambda = r \cos \varphi, \ \ h_\varphi = r, \ \ h_r = 1.$](img143.png) |
(3.37) |
$B$7$?$,$C$F(B, $B%9%+%i!<(B
$B$*$h$S%Y%/%H%k(B
$B$K4X$9$kHyJ,I=8=$O
![$\displaystyle \Dgrad \bullet$](img120.png) |
![$\displaystyle = \Dvect{e}_{\lambda} \frac{1}{r \cos \varphi} \DP{\bullet}{\lamb...
...t{e}_{\varphi} \frac{1}{r} \DP{\bullet}{\varphi} + \Dvect{e}_r \DP{\bullet}{r},$](img145.png) |
(3.38) |
![$\displaystyle \Ddiv \Dvect{A}$](img122.png) |
![$\displaystyle = \frac{1}{r^2 \cos \varphi} \left[ r \DP{A_{\lambda}}{\lambda} +...
...arphi} ( \cos \varphi A_{\varphi}) + \cos \varphi \DP{}{r} ( r^2 A_r ) \right],$](img146.png) |
(3.39) |
![$\displaystyle \nabla^2 \bullet$](img124.png) |
![$\displaystyle = \frac{1}{r^2 \cos \varphi} \left[ \DP{}{\lambda} \left( \frac{1...
...hi} \right) + \DP{}{r} \left( r^2 \cos \varphi \DP{\bullet}{r} \right) \right],$](img147.png) |
(3.40) |
![\begin{align*}\begin{split}\Drot \Dvect{A} & = \quad \Dvect{e}_{\lambda} \frac{1...
...da} - \DP{}{\varphi} (\cos \varphi A_{\lambda}) \right], \end{split}\end{align*}](img148.png) |
(3.41) |
![$\displaystyle \DD{\bullet}{t}$](img128.png) |
![$\displaystyle = \DP{\bullet}{t} + \frac{u}{r \cos \varphi} \DP{\bullet}{\lambda} + \frac{v}{r} \DP{\bullet}{\varphi} + w \DP{\bullet}{r},$](img149.png) |
(3.42) |
![\begin{align*}\begin{split}\DD{\Dvect{A}}{t} & = \quad \Dvect{e}_{\lambda} \left...
...rac{v}{r} A_{\varphi} - \frac{u}{r} A_{\lambda} \right]. \end{split}\end{align*}](img150.png) |
(3.43) |
$B<+E>3QB.EY%Y%/%H%k$NI=8=$O
![\begin{align*}\begin{split}2 \Dvect{\Omega} \times \Dvect{v} & = 2 \Omega ( \Dve...
...vect{e}_{\varphi} - 2 \Omega \cos \varphi u \Dvect{e}_r. \end{split}\end{align*}](img151.png) |
(3.44) |
$B$7$?$,$C$F(B, $B1?F0J}Dx<0$O(B
$BO"B3$N<0$O(B
![$\displaystyle \DD{\rho}{t} + \frac{1}{r \cos \varphi} \DP{}{\lambda} ( u) + \fr...
...arphi} \DP{}{\varphi} ( \cos \varphi v) + \frac{1}{r^2} \DP{}{r} ( r^2 w ) = 0.$](img158.png) |
(3.48) |
$BG.NO3X$N<0$O(B
![$\displaystyle \DD{}{t} T = \frac{1}{C_p^d \rho} \DD{p}{t} + \frac{Q^*}{C_p^d}.$](img159.png) |
(3.49) |
$B>uBVJ}Dx<0$O(B
![$\displaystyle p = \rho R^d T_v.$](img160.png) |
(3.50) |
$B?e>x5$$N<0$O(B
![$\displaystyle \DD{q}{t} = S_q.$](img41.png) |
(3.51) |
$B$3$3$G(B,
![$\displaystyle \DD{}{t} = \DP{}{t} + \frac{u}{r \cos \varphi} \DP{}{\lambda} + \frac{v}{r} \DP{}{\varphi} + w \DP{}{r}$](img161.png) |
(3.52) |
$B$G$"$k(B.
$B1tD>J}8~$N1?F0J}Dx<0$KBP$7(B, $B0J2<$N$h$&$K@ENO3XJ?9U6a;w$r9T$J$&(B.
![$\displaystyle 0 = - \frac{1}{\rho} \DP{p}{z} - g.$](img162.png) |
(3.53) |
$B$3$N$H$-(B, $B1?F0%(%M%k%.!<$NJ]B8B'$r9MN8$7$F(B, $B?eJ?J}8~$N1?F0J}Dx<0$KBP$7(B
$B$F$b6a;w$r;\$9(B. $B1?F0%(%M%k%.!<$N<0$O(B, $B1?F0J}Dx<[email protected],$K$=$l$>$l(B
$B$r$+$1$k$3$H$GF@$i$l$k(B.
$B%3%j%*%j$NNO$*$h$S%a%H%j%C%/9`$OF1$8HV9f$N$b$NF1;N$GBG$A>C$7$"$C$F(B, $B1?(B
$BF0%(%M%k%.!<$N;~4VJQ2=$K4sM?$7$J$$$3$H$,$o$+$k(B
3.7.
$B$7$?$,$C$F(B, $B@ENO3XJ?9U6a;w$N:]$K1tD>@.J,$N<0$+$iMn$H$7$?9`(B(2),(4),(5)
[email protected],$N<0$N9`$b
$B$3$3$G(B,
$B$O%3%j%*%j%Q%i%a!<%?(B
$B$G$"$k(B.
$BBg5$$NAX$,OG@1H>7B$KHf$Y$FGv$$$3$H$r2>Dj$7(B, $BJ}Dx<0Cf$N(B
$B$r(B, $BBeI=E*(B
$B$JOG@1H>7B(B
$B$G$*$-$+$($k(B. $B$^$?(B,
$B$K$h$kHyJ,$O$9$Y$F3$H49bEY(B
$B$K$h$kHyJ,$G$*$-$+$($k(B. $B$3$N$H$-4pACJ}Dx<0$O
![$\displaystyle \DD{\rho}{t}$](img175.png) |
![$\displaystyle = - \rho \Ddiv \Dvect{v},$](img176.png) |
(3.57) |
![$\displaystyle \DD{q}{t}$](img177.png) |
![$\displaystyle = S_q,$](img178.png) |
(3.58) |
![$\displaystyle \DD{u}{t}$](img152.png) |
![$\displaystyle = \frac{uv \tan \varphi}{a} + fv - \frac{1}{\rho a \cos \varphi} \DP{p}{\lambda} + {\cal F}_{\lambda},$](img179.png) |
(3.59) |
![$\displaystyle \DD{v}{t}$](img154.png) |
![$\displaystyle = - \frac{u^2 \tan \varphi}{a} - fu - \frac{1}{\rho a } \DP{p}{\varphi} + {\cal F}_{\varphi},$](img180.png) |
(3.60) |
0 |
![$\displaystyle = - \frac{1}{\rho} \DP{p}{z} - g,$](img181.png) |
(3.61) |
![$\displaystyle \DD{T}{t}$](img182.png) |
![$\displaystyle = \frac{1}{C_p^d \rho} \DD{p}{t} + \frac{Q^*}{C_p^d},$](img183.png) |
(3.62) |
![$\displaystyle p$](img184.png) |
![$\displaystyle = \rho R^d T_v.$](img185.png) |
(3.63) |
$B$3$3$G(B,
$B@ENO3XJ?9U$N$b$H$G$O(B, $B5$05(B
$B$O1tD>:BI8(B
$B$KBP$7C1D48:>/$9$k4X?t$G(B
$B$"$k(B. $B$=$3$G(B, $B1tD>:BI8$r(B
$B$+$i(B, $BCOI=LL5$05(B
$B$G5,3J2=$7$?5$05:BI8(B,
$B$KJQ49$9$k(B.
$B$H(B
$B$N4X78$O(B, $B@ENO3XJ?9U$N<0(B
(3.5)$B$rJQ7A$7$FF@$i$l$k(B.
- $B:BI8$+$i(B
- $B:BI8$X$NJQ498x<0$r<($9(B.
$B1tD>HyJ,(B
![\begin{align*}\begin{split}\DP{\bullet}{z} & = \DP{\sigma}{z} \DP{\bullet}{\sigma} \\ & = - \frac{g \sigma}{R^d T_v} \DP{\bullet}{\sigma}. \end{split}\end{align*}](img193.png) |
(3.68) |
$B?eJ?HyJ,(B
$B;~4VHyJ,(B
![\begin{align*}\begin{split}\left( \DP{\bullet}{t} \right)_z & = \left( \DP{\bull...
... \DP{\bullet}{\sigma} \left( \DP{z}{t} \right)_{\sigma}. \end{split}\end{align*}](img196.png) |
(3.71) |
$B%i%0%i%s%8%eHyJ,$O$3$l$i$rMQ$$$F(B,
$B$3$3$G(B,
-$B:BI81tD>B.EY(B
$B$rDj5A$9$k(B.
(3.67)$B$r=ENO%]%F%s%7%c%k(B
$B$rMQ$$$F=q$1$P(B,
![$\displaystyle \DP{\Phi}{\sigma}=-\frac{R^d T_v}{\sigma}.$](img205.png) |
(3.74) |
$B?eJ?$N05NO8{G[$O(B, (3.69)$B$*$h$S(B(3.70) $B$r(B
$B$KBP$7$FE,MQ$7(B, (3.66) $B$rMQ$$$l$P
$B$3$3$G(B
$B$G$"$k(B. $B$7$?$,$C$F(B, $B1?F0J}Dx<[email protected],$O(B,
$BB.EY$NH/;6$O(B,
$B$3$3$G(B,
![$\displaystyle \Ddiv{\Dvect{v}_H} \equiv \frac{1}{a \cos \varphi} \DP[][\sigma]{...
...ac{1}{a \cos \varphi} \left( \DP{}{\varphi} (v \cos \varphi ) \right)_{\sigma}.$](img225.png) |
(3.80) |
$B$f$($K(B,
- $B:BI8O"B3$N<0$O
$B$7$?$,$C$F(B
$B$rMQ$$$F5-=R$9$l$P
(3.62)$B$N1&JUBh(B1$B9`$O
$B$3$3$G(B,
![$\displaystyle \Dvect{v}_H \cdot \nabla_{\sigma} = \frac{u}{a \cos \varphi} \DP{}{\lambda} + \frac{v}{a} \DP{}{\varphi}.$](img235.png) |
(3.84) |
$B$7$?$,$C$F(B, $BG.NO3X$N<0$O
$B$3$3$G(B,
$B:BI8$K$*$1$k6-3&>r7o$K$D$$$F=R$Y$k(B.
![$\displaystyle \Phi = \Phi_s (\lambda, \varphi) \ \ \ \ {\rm at} \ \ \sigma=1.$](img237.png) |
(3.86) |
$B$9$J$o$A(B,
$B$OI=LLCO7A$rI=$9(B. $B$3$N6-3&>r7o$rMQ$$$F(B, $B@ENO3XJ?9U(B
$B$N<0$r1tD>@QJ,$9$k$3$H$G(B, $BG$0U$N(B
$B$K$*$1$k9bEY(B
$B$r5a$a$k(B
$B$3$H$,$G$-$k(B.
![$\displaystyle \dot{\sigma} = 0 \ \ \ at \ \ \sigma = 0, \ 1.$](img240.png) |
(3.87) |
$B$3$3$G$O=R$Y$J$$(B.
$BO"B3$N<0$r1tD>J}8~$K(B
$B$+$i(B
$B$^$G@QJ,$7(B,
$B$K4X$9$k6-3&>r7o$rMQ$$$l$P(B, $B798~J}Dx<0$H$h$P$l$k(B
$B$N;~4VJQ2=$K4X$9$k<0$,F@$i$l$k(B.
![$\displaystyle \frac{\partial \pi}{\partial t} = - \int_{0}^{1} \Dvect{v}_{H} \cdot \nabla_{\sigma} \pi d \sigma - \int_{0}^{1} D d \sigma.$](img244.png) |
(3.88) |
$B$3$N<0$rMQ$$$l$P(B,
$B$N>pJs$,$J$/$F$bCOI=LL5$05$N;~4VJQ2=(B
$B$r5a$a$k$3$H$,$G$-$k(B. $B$J$*(B, $B$3$3$G$O8e$N$3$H$r9M$($F(B
$B$r(B
$B$HI=8=$7$F$$$k(B.
$B$K$D$$$F$O
$B1tD>B.EY(B
$B$O(B, $BO"B3$N<0$r1tD>J}8~$K(B
$B$+$i(B
$B$^$G@QJ,$9$k$3$H$G?GCGE*$KF@$i$l$k(B.
![$\displaystyle \dot{\sigma} = - \sigma \frac{\partial \pi}{\partial t} - \int_{0...
... d \sigma - \int_{0}^{\sigma} \Dvect{v}_{H} \cdot \nabla_{\sigma} \pi d \sigma.$](img248.png) |
(3.89) |
$B12EY$NDj5A$r:F7G$9$k(B.
![$\displaystyle \zeta \equiv \frac{1}{a \cos \varphi} \DP{v}{\lambda} - \frac{1}{a \cos \varphi} \DP{}{\varphi} ( u \cos \varphi).$](img249.png) |
(3.90) |
$B1?F0J}Dx<0$N(B
$B$N<0(B
(3.77)
$B$K(B
$B$r(B
$B:nMQ$7(B,
$B$N<0(B
(3.78)
$B$K(B
$B$r(B
$B:nMQ$7(B, $B$3$NN><0$N:9$r$H$C$FJQ7A$9$l$P
($B>ZL@(B)
(3.77),
(3.78)$B$N$=$l$>$l:8JUBh(B1$B9`$r(B,
(3.72), (3.73)
$B$rMQ$$$FE83+$9$k$H0J2<$N$h$&$K$J$k(B.
(3.93)
$B$K(B
$B$r:nMQ$7$?<0$+$i(B
(3.92)
$B$K(B
$B$r(B
$B:nMQ$7$?<0$r0z$/$3$H$G(B,
(3.94)$B$N(B
$B$K4X$9$k(B
$B9`(B ($B:8JUBh(B7$B9`$HBh(B16$B9`(B) $B$OBG$A>C$7$"$C$F>C$($k(B.
$B$=$NB>$N9`$O0J2<$N$h$&$K@0M}$5$l$k(B.
$B;~4VHyJ,$N9`(B ($BBh(B1$B9`$HBh(B10$B9`(B):
$BB.EY$N(B2$B3,?eJ?HyJ,$N9`$=$N(B1 ($BBh(B3, 12, 15$B9`(B):
$BB.EY$N(B2$B3,?eJ?HyJ,$N9`$=$N(B2 ($BBh(B2, 6, 11$B9`(B):
$B$3$3$G(B, 2 $B9TL\$NBh(B3$B9`$NJQ7A$K$O(B,
(3.96)$B$N(B
2, 3 $B9TL\$GBh(B1$B9`$KBP$7$FMQ$$$?JQ7A$rMQ$$$?(B.
(3.94)$B$r(B
(3.95),
(3.96),
(3.97)
$B$rMQ$$$F@0M}$7(B, $BN>JU$K(B
$B$r3]$1$k$3$H$G(B,
(3.91)$B$,F@$i$l$k(B.
($B>ZL@=*$j(B)
$BH/;6$NDj5A$r:F7G$9$k(B.
![$\displaystyle D \equiv \frac{1}{a \cos \varphi} \DP{u}{\lambda} + \frac{1}{a \cos \varphi} \DP{}{\varphi} ( v \cos \varphi).$](img282.png) |
(3.98) |
$B1?F0J}Dx<0$N(B
$B$N<0(B
(3.77)
$B$K(B
$B$r:nMQ$7(B,
$B$N<0(B
(3.78)
$B$K(B
$B$r:nMQ$7(B,
$BN><0$NOB$r$H$C$FJQ7A$9$k$H
$B$3$3$G(B,
($B>ZL@(B)
(3.92)
$B$K(B
$B$r:nMQ$7$?<0$H(B
(3.93)
$B$K(B
$B$r:nMQ$7$?<0$H$NOB$r$H$k$3$H$G(B,
$B$3$N<0$O0J2<$N$h$&$K@0M}$5$l$k(B.
$B;~4VHyJ,$N9`(B ($BBh(B1$B9`$HBh(B10$B9`(B):
$B$K4X$9$k9`(B ($BBh(B7$B9`$HBh(B16$B9`(B):
$BB.EY$N(B2$B3,?eJ?HyJ,$N9`$=$N(B1 ($BBh(B2, 12$B9`(B):
$BBh(B2$B9`$HBh(B3$B9`$K$D$$$F$O(B, $B$3$l0J9_$N9`$N@0M}$N:]$K:FEP>l$9$k(B.
$BB.EY$N(B2$B3,?eJ?HyJ,$N9`$=$N(B2 ($BBh(B3, 6$B9`(B,
(3.105)$B$NBh(B2$B9`(B):
$BB.EY$N(B2$B3,?eJ?HyJ,$N9`$=$N(B3 ($BBh(B11, 15$B9`(B,
(3.105)$B$NBh(B3$B9`(B):
(3.102)$B$r(B
(3.103),
(3.104),
(3.105),
(3.106),
(3.107)
$B$rMQ$$$F@0M}$7(B, $BN>JU$K(B
$B$r3]$1$k$3$H$G(B,
(3.99)$B$,F@$i$l$k(B.
($B>ZL@=*$j(B)
(3.85)$B$h$j(B
![\begin{align*}\begin{split}\DP{T}{t} \ &= \ - \Dinv{a \cos \varphi} \DP{(u T)}{\...
...{ \dot{\sigma} }{ \sigma } \right) + \frac{Q^{*}}{C_p} . \end{split}\end{align*}](img318.png) |
(3.108) |
$B$3$3$G(B,
![$\displaystyle \kappa = \frac{R^d}{C_p^d}$](img319.png) |
(3.109) |
$B$G$"$k(B.
$B2>29EY(B
$B$r $B$N$_$K0MB8$9$k>l(B
$B$H(B, $B$=$3$+$i$N$:[email protected],(B
$B$K$o$1$F5-=R$9$k(B.
$B12EYJ}Dx<0$G(B
$B$r4^$`9`$O
$BH/;6J}Dx<0$G(B
$B$r4^$`9`$O
$B$3$3$G(B
![$\displaystyle \nabla_{\sigma}^{2}$](img333.png) |
![$\displaystyle \equiv \frac{1}{a^{2} \cos^2 \varphi} \DP[2]{}{\lambda} + \frac{1}{a^{2} \cos \varphi} \DP{}{\varphi} \left( \cos \varphi \DP{}{\varphi} \right)$](img334.png) |
(3.112) |
$B$rMQ$$$?(B.
$BG.NO3X$N<0$G$O(B, $B29EY(B
$B$r(B
$B$N$_$K0MB8$9$k>l(B
$B$H(B, $B$=$3$+$i$N$:[email protected],(B
$B$K$o$1$F5-=R$9$k(B.
$B$9$J$o$A(B, $B1&JUBh(B1-3$B9`$O
$B0J>e$rMQ$$$FJ}Dx<07O$r5-=R$9$l$P
$BO"B3$N<0(B
![$\displaystyle \DP{\pi}{t} + \Dvect{v}_H \cdot \Dgrad_{\sigma} \pi = - D - \DP{\dot{\sigma}}{\sigma}.$](img342.png) |
(3.114) |
$B@E?e05$N<0(B
![$\displaystyle \DP{\Phi}{\sigma}=-\frac{R^d T_v}{\sigma}.$](img205.png) |
(3.115) |
$B1?F0J}Dx<0(B
$B$3$3$G(B,
$BG.NO3X$N<0(B
![\begin{align*}\begin{split}\DP{T}{t} \ &= \ - \Dinv{a \cos \varphi} \left\{ \DP{...
...{ \dot{\sigma} }{ \sigma } \right) + \frac{Q^{*}}{C_p} . \end{split}\end{align*}](img350.png) |
(3.120) |
$B?e>x5$$N<0(B
![$\displaystyle \DP{q}{t} \ $](img351.png) |
![$\displaystyle = \ - \Dinv{a \cos \varphi} \left\{ \DP{(u q)}{\lambda} + \DP{(v q \cos \varphi)}{\varphi} \right\} + q D - \dot{\sigma} \DP{q}{\sigma} + S_{q} .$](img352.png) |
(3.121) |
(3.16)$B$GF3F~$7$?(B
$B$+$iG4@-$K$h$k4sM?(B
$B$r:F$SJ,N%$7(B,
$B$H$9$k(B. $B0lHL$KG4(B
$B@-$O1?F0J}Dx<0$K$*$$$FE,Ev$J%Q%i%a%?%j%x5$$N<0$KBP$7$F$=$l$>$l?eJ?3H;69`(B
,
,
,
$B$r$D$1$k(B.
$B$3$N9`$NIU2C$O,
$B$r$=$l$>$l(B
,
$B$N$h$&$K$"$i$?$a$FCV$-$J$*$;$P(B,
dcpam5$B$NNO3X2aDx$N;YG[J}Dx<07O$rF@$k(B.
- Haltiner, G.J., Williams, R.T., 1980:
Numerical Prediction and Dynamic Meteorology (2nd ed.).
John Wiley & Sons, 477pp.
- ...
$BM}A[5$BN$N>uBVJ}Dx<0$rMQ$$$k(B3.1
-
$B4%Ag6u5$$H?e>x5$$O(B, $BF1$8B.EY$H29EY$r$b$D$3$H$r0EL[$N$&$A$K2>Dj(B
$B$7$F$$$k(B. $B$7$?$,$C$F(B, $B?e>x5$$K4X$9$k1?F0NLJ]B8B'$*$h$SA4%(%M%k%.!uBVJ}Dx<0$r9MN8$9$kI,MW$,$J$$(B.
- ... $B?e>x5$$N@8@.>CLG$rL5;k$9$l$P(B3.2
-
$Bx5$<0$G$O@8@.>CLG$r4^$a$F$$$k(B. $B$7$?$,$C$F(B,
$BA4Bg5$$Nx5$$N@8@.>CLG$,5/$-$F$bA4
- ...
$B$N0zNO$K$h$k%]%F%s%7%c%k(B3.3
-
$B$3$l$O1s?4NO$r9MN8$7$J$$OG@1$N
- ... $BO"B3$N<0$rMQ$$$FJQ7A$9$k$3$H$GF@$i$l$k(B3.4
-
$BF3=P$N2aDx$r<($9(B. $B:8JUBh(B1$B9`$HBh(B2$B9`$O
$B$^$?(B, $B:8JUBh(B5$B9`$O
$B$G$"$k$H$7$F$$$k(B.
...
$B$G6a;w$9$k$H(B3.5
$B$3$N6a;w$K$O5?Ld$,;D$k(B. $B>uBVJ}Dx<0$K$*$$$F$O(B,
$B5$BNDj?t(B
$B$r(B
$B$H$9$k6a;w$O(B
($B2>29EY(B
$B$rF3F~$9$k$3$H$G(B)$B9T$J$o$J$+$C$?(B.
$B$K$D$$$F$@$16a;w$9$k$N$O6a;w$N%l%Y%k$K(B
$B0l4S@-$,$J$$$h$&$K;W$o$l$k(B.
$B0J2<$O$=$N
$B$rMQ$$$F$$$k(B. $BA4Bg5$$NFbIt(B
$B%(%M%k%.!<$O(B
$B$H$J$k(B. $B$7$?$,$C$F(B,
$B$G$"$k(B. $B$^$?(B,
$B$G$"$k$+$i(B,
$B$H$J$k(B. $B$3$3$G(B,
, $B$*$h$S(B
$B$rMQ$$$?(B. $BG.NO3X$N<0$G$O(B, $B$3$N>u67$KBP$7$F(B,
$B$H6a;w$7$?(B. $B$7$+$7(B, $B@ENO3XJ?9U$N<0$G$O(B, $B$?$C$?(B
$B$N0c$$$J$N(B
$B$K(B
$B$r(B
$B$K6a;w$;$:(B, $B2>29EY$NF3F~$K$h$j87L)$K(B
$B
...
$B$,@.$j$?$D(B3.6
$B$3$l$O<+L@$N$3$H$H$7$?$$(B. $B%9%+%i!<(B
$B$N:BI8JQ49$O:BI8JQ49%F(B
$B%s%=%k$K0MB8$7$J$$(B($B$GF1$8CM$r$H$k(B)$B$+$i$G$"$k(B.
$B0lJ}(B, $B%Y%/%H%k$N:BI8JQ49$O(B, $B:BI8JQ49%F%s%=%k$H$N@Q$GI=8=$5$l(B
$B$k(B. $B$7$?$,$C$F(B, $B:BI8JQ49%F%s%=%k<+BN$,;~4VJQ2=$9$k>l9g(B, $BEvA3%Y%/(B
$B%H%k$N;~4VHyJ,$O:BI8JQ49%F%s%=%k$N;~4VHyJ,$N1F6A$r
...
$BF0%(%M%k%.!<$N;~4VJQ2=$K4sM?$7$J$$$3$H$,$o$+$k(B3.7
$B1s?4NO$r=ENO2CB.EY$+$iJ,N%$7$F%(%M%k%.!<$N<0$G9MN8$9$k$H(B,
$B$3$N4sM?$O%-%c%s%;%k$9$k$3$H$J$/;D$k(B.
: A. $B;HMQ>e$NCm0U$H%i%$%;%s%95,Dj(B
: dcpam5 $B;YG[J}Dx<07O$NF3=P$K4X$9$k;29M;qNA(B
: 2. $B:BI87O$N
Yasuhiro MORIKAWA
$BJ?@.(B20$BG/(B8$B7n(B3$BF|(B