next up previous
: 2. $B;29MJ88%(B : $B<>=aBg5$$K$*$1$k(B 2 $B : $B<>=aBg5$$K$*$1$k(B 2 $B


1. $B4pACJ}Dx<07O(B

$BK\?tCM%b%G%k$O?eJ?!&1tD>$N(B 2 $B, $B1tD>J}8~$N:BI8JQ?t$r(B $z$ $B$HI=$7(B, $B;~4VJ}8~$NJQ?t$O(B $t$ $B$HI=$9(B.

1.1 $B1?F0J}Dx<0!&05NOJ}Dx<0!&G.$N<0!&:.9gHf$NJ]B8<0(B

$BNO3XE*$JOHAH$_$O(B, $B=`05=LJ}Dx<07O(B(Klemp and Wilhelmson,1978)$B$rMQ$$$k(B. $B$3$NJ}Dx<07O$G$O(B, $BM=JsJQ?t$r?eJ?0lMM$J4pK\>l$H$=$3$+$i$N$:$l$KJ,N%$7(B, $BJ}Dx<0$N@~7A2=$r9T$C$F$$$k(B. $BJ}Dx<0Cf$NJQ?t$OIUO?(B D $B$K<($9(B.

$B0J2<$K=`05=LJ}Dx<07O$N;~4VH/E8J}Dx<0$r0lMw$9$k(B. $BL)EY$N<0$G$O4%[email protected],$H<>[email protected],$NJ,;RNL$N:9$r9MN8$9$k$,(B, $BG.$N<0$G$O9MN8$7$J$$(B. $B$^$?05NOJ}Dx<0$G$OHsCGG.2CG.$K$h$kBg5$$NKDD%$H(B, $B6E=L$KH<$&05NOJQ2=$rL5;k$7$F$$$k(B.

$B1?F0J}Dx<0(B

$\displaystyle \DP{u}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{u}{x} + w \DP{u}{z} \right)
- {c_{p}}_{d} \bar{\theta_{v}} \DP{\pi}{x}
+ Turb.u$ (1.1)
$\displaystyle \DP{w}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{u}{x} + w \DP{u}{z} \right)
- {c_{p}}_{d} \bar{\theta_{v}} \DP{\pi}{z}
+ Turb.w$  
    $\displaystyle + \left(
\frac{\theta}{\bar{\theta}}
+ \frac{\sum q_{v}/M_{v}}{1/...
...
- \frac{\sum q_{v} + \sum q_{c} + \sum q_{r}}
{1 + \sum \bar{q_{v}}}
\right) g$ (1.2)

$B05NOJ}Dx<0(B

$\displaystyle \DP{\pi}{t}
= - \frac{\overline{{C_{s}}^{2}}}{{c_{p}}_{d} \bar{\rho} \bar{\theta_{v}}^{2}}
\DP{}{x_{j}}(\bar{\rho} \bar{\theta_{v}} u_{j})$     (1.3)

$BG.$N<0(B

$\displaystyle \DP{\theta}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{\theta}{x} + w \DP{\theta}{z} \right)
- w\DP{\bar{\theta}}{x}
+ \Dinv{\bar{\pi}} \left(Q_{cnd} + Q_{rad} + Q_{dis}\right)$  
    $\displaystyle + Turb.\bar{\theta}
+ Turb.\theta$ (1.4)

$B:.9gHf$NJ]B8<0(B

$\displaystyle \DP{q_{v}}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{q_{v}}{x} + w \DP{q_{v}}{z} \right)
- w\DP{\bar{q_{v}}}{x}
+ Src.q_{v} + Turb.q_{v} + Turb.\bar{q_{v}},$ (1.5)
$\displaystyle \DP{q_{c}}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{q_{c}}{x} + w \DP{q_{c}}{z} \right)
+ Src.q_{c} + Turb.q_{c}$ (1.6)
$\displaystyle \DP{q_{r}}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{q_{c}}{x} + w \DP{q_{c}}{z} \right)
+ Src.q_{r} + Fall.q_{r} + Turb.q_{r}$ (1.7)

$B$?$@$7(B, $\bar{~}$ $B$NIU$$$?JQ?t$O?eJ?0lMM$J4pK\>l$G$"$k$3$H$r<($7(B, $B>eIU$-E:$(;z(B $c$ mail protected],$r<($9(B.

$B%(%/%9%J!<4X?t(B $\pi $

\begin{displaymath}
\pi \equiv \left(\frac{p}{p_{0}}\right)^{R_{d}/{c_{p}}_{d}}
\end{displaymath} (1.8)

$B290L(B $\theta $

$\displaystyle \theta \equiv T \left(\frac{p_{0}}{p}\right)^{R_{d}/{c_{p}}_{d}}
= \frac{T}{\pi}$     (1.9)

$BL)EY(B $\rho $

$\displaystyle \rho$ $\textstyle =$ $\displaystyle \frac{p}{R_{d}T}
\left(
\frac{1/{M_{d}}}
{1/M_{d} + \sum{{q_{v}}/{M_{v}}}} \right)
\left( 1 + \sum q_{v} + \sum q_{c} + \sum q_{r} \right)$  
  $\textstyle =$ $\displaystyle \frac{p}{R_{d}T_{v} }
=
\frac{p_{0} \pi^{{c_{v}}_{d}/R_{d}}}{R_{d} \theta_{v}}$ (1.10)

$B2>290L(B $\theta_{v}$

$\displaystyle \theta_{v} =
\frac{\theta}{
\left( \frac{1/M_{d}}
{1/M_{d} + \sum...
...v}}/{M_{v}}}} \right)
\left( 1 + \sum q_{v} + \sum q_{c} + \sum q_{r} \right) }$     (1.11)

$B2;GHB.EY(B ${C_{s}}^{2}$

    $\displaystyle {C_{s}}^{2}
= \frac{{c_{p}}_{d}}{{c_{v}}_{d}} R_{d} \pi \theta_{v}$ (1.12)

1.2 $B1@HyJ*M}2aDx$N%Q%i%a%?%j%

$BJ}Dx<07O$K4^$^$l$k6E=L$K$h$k2CG.9`(B $Q_{cnd}$, $B@[email protected]`(B $Src$, $BMn2<9`(B $Fall$ $B$NI>2A$O(B, $BCfEg(B(1998)$B$GMQ$$$i$l$?(B Kessler (1969) $B$N%Q%i%a%?%j%$&(B.

$BCH$+$$1+$N%P%k%/K!$N%Q%i%a%?%j%
$B5-9f(B $B0UL#(B $BFbMF(B
$q_{v}$ $B5$Aj$N:.9gHf(B $B5$BN$N>uBV$GBg5$Cf$KB8:_$9$k?e(B
$q_{c}$ $B1@?e:.9gHf(B $BMn2
    $BDL>o(B 100 $\mu$m $B0J2<$NHy>.$JN.BNN3;R$G$"$k(B.
$q_{r}$ $B1+?e:.9gHf(B $BM-0U$JMn2

$B$=$7$F(B, $BHyJ*M}AG2aDx$H$7$F0J2<$r9MN8$9$k(B. $B$?$@$7(B, $B$3$l$i$NNL$OA4$F@5$NCM$H$7$FDj5A$5$l(B, $B?e>x5$$,D>@\1+?e$K6E7k$9$k2aDx$OL5;k$5$l$F$$$k(B.
$B5-9f(B $BFbMF(B
$CN_{vc}$ $B6E7k$K$h$k?e>x5$$+$i1@?e$X$NJQ49(B (condensation)
$EV_{cv}$ $B>xH/$K$h$k1@?e$+$i?e>x5$$X$NJQ49(B (evaporation)
$EV_{rv}$ $B>xH/$K$h$k1+?e$+$i?e>x5$$X$NJQ49(B (evaporation)
$CN_{cr}$ $BJ;[email protected]$K$h$k1@?e$+$i1+?e$X$NJQ49(B.
  $BJ;9g$d?e>x5$3H;6$K$h$j(B, $B1@N3;R$,1+N3$NBg$-$5$K$^[email protected]$9$k(B (autocondensation)
$CL_{cr}$ $B>WFMJ;9g$K$h$k1@?e$+$i1+?e$X$NJQ49(B. $BBg?eE)$,>.?eE)$r>WFMJ;(B $B9g$9$k(B (collection)
$PR_{r}$ $B1+?e$N=ENOMn2<$KH<$&1+?e:.9gHf$NJQ2=N((B (Precipitation)

$B$3$NHyJ*M}AG2aDx$rMQ$$$F(B (1.5) - (1.7) $B<0$r=q$-D>$9$H(B, $B0J2<$N$h$&$K$J$k(B.

$\displaystyle \DP{\theta}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{\theta}{x} + w \DP{\theta}{z} \right)
- w\DP{\bar{...
...x}
+ \frac{L}{{c_{p}}_{d} \bar{\pi}} \left( CN_{vc} - EV_{cv} - EV_{rv} \right)$  
    $\displaystyle + \Dinv{\bar{\pi}} \left(Q_{rad} + Q_{dis}\right)
+ Turb.\bar{\theta}
+ Turb.\theta$ (1.13)
$\displaystyle \DP{q_{v}}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{q_{v}}{x} + w \DP{q_{v}}{z} \right)
- w\DP{\bar{q_{v}}}{x}
- \left( CN_{vc} - EV_{cv} - EV_{rv} \right)$  
    $\displaystyle + Turb.q_{v} + Turb.\bar{q_{v}},$ (1.14)
$\displaystyle \DP{q_{c}}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{q_{c}}{x} + w \DP{q_{c}}{z} \right)
+ ( CN_{vc} - EV_{cv} - CN_{cr} - CL_{cr}) + Turb.q_{c},$ (1.15)
$\displaystyle \DP{q_{r}}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{q_{c}}{x} + w \DP{q_{c}}{z} \right)
+ (CN_{cr} + CL_{cr} - EV_{rv} ) + PR_{r} + Turb.q_{r}$ (1.16)

$B$3$3$G(B, $\gamma = L_{v}/ ({c_{p}}_{d} \pi)$ $B$G$"$j(B, $L_{v}$ $B$O?e$N>xH/$N@xG.(B[J K$^{-1}$ kg$^{-1}$], ${c_{p}}_{d}$ $B$O4%AgBg5$$NDj05HfG.(B[J K kg$^{-1}$], $\pi $ $B$O%(%/%9%J!<4X?t$G$"$k(B.

$BHyJ*M}AG2aDx$O0J2<$N$h$&$KDj<02=$9$k(B.

$B?e>x5$$H1@?e$N4V$NJQ49(B: $-CN_{vc} + EV_{cv}$
 
$B1@?e$ON3$,>.$5$/(B, $B?e>x5$$H$N4V$G=V4VE*$KK0OBD4@a$,5/$3$k$b$N(B $B$H$9$k(B. $B$9$J$o$A(B, $B0\N.$J$I$N9`$r7W;;$7$?8e$N29EY$H?e>x5$NL$,(B $B2aK0OB>uBV$H$J$C$F$$$k>l9g$K$O(B, $B$A$g$&$IK0OB$K$J$kNL$N?e>x5$(B $B$r6E=L$5$;$k(B. $B0lJ}(B, $B0\N.$J$I$N9`$r7W;;$7$?8e$K(B, $B1@?e$,B8:_$9(B $B$k$K$b94$o$i$:L$K0OB$K$J$C$F$$$k>l=j$G$O(B, $B$A$g$&$IK0OB$K$J$k(B $BNL$N1@?e$r>xH/$5$;$k(B.

$B1@?e$NJ;[email protected](B: $CN_{cr}$
 
Kessler (1969) $B$K=>$C$F(B, $B0J2<$N$h$&$KM?$($k(B.
    $\displaystyle CN_{cr} = ( q_{c} - q_{c0} ) / \tau _{ac}$ (1.17)

$B1@?e$N>WFMJ;9g(B: $CL_{cr}$
 
Kessler (1969) $B$K=>$C$F(B, $B0J2<$GDj<02=$9$k(B.
    $\displaystyle CL_{cr} = 2.2 q_{c} (\bar{\rho} q_{r})^{0.875} .$ (1.18)

$B1+?e$N>xH/(B: $EV_{rv}$
 

$\displaystyle EV_{rv} =
4.85 \times 10^{-2} (q_{vsw} - q_{v}) (\bar{\rho} q_{r})^{0.65}$     (1.19)

$B1+?e$N%U%i%C%/%9(B: $PR_{r}$
 
$B1+?e$N=ENOMn2<$K$h$k:.9gHf$NJQ2=N($O(B,
$\displaystyle PR_{r} = \Dinv{\bar{\rho}} \DP{}{z}(\bar{\rho} U_{r} q_{r}).$     (1.20)

$B$G$"$j(B, $B1+?e$N=*C [m s$^{-1}$] $B$O(B
$\displaystyle U_{r} = 12.2 (q_{r})^{0.125}$     (1.21)

$B$GM?$($k(B.

1.3 $BJ|

$BJ| $B$O@5L#$N>e8~$-J| $B$rMQ$$$F(B $B0J2<$N$h$&$KI=$5$l$k(B.

\begin{displaymath}
Q_{rad} = - \frac{1}{\overline{\rho}c_{p_{d}}}\DD{F_{net}}{z}
\end{displaymath}

$BK\%b%G%k$G$O(B $F_{net}$ $B$OM[$K7W;;$;$:(B, $Q_{rad}$ $B$O9bEY$N$_$K0MB8$9$k(B $B%Q%i%a%?$H$7$FM?$($k(B.

1.4 $BMpN.:.9g$N%Q%i%a%?%j%

1.4.1 $B1?F0J}Dx<0Cf$N3H;69`(B

Klemp and Wilhelmson (1978) $B$*$h$S(B CReSS ($BDZLZ$H:g86(B, 2001) $B$HF1MM$K(B, 1.5 $B
$\displaystyle Turb.{u_{i}}$ $\textstyle =$ $\displaystyle - \DP{}{x_{j}} \overline{(u_{i}^{\prime} u_{j}^{\prime})}$  
  $\textstyle =$ $\displaystyle - \DP{}{x_{j}}
\left[
- K_{m} \left(\DP{u_{i}}{x_{j}}
+ \DP{u_{j}}{x_{i}}\right)
+ \frac{2}{3} \delta_{ij} E
\right].$ (1.22)

$B$3$3$G(B $K_{m}$ $B$O1?F0NL$KBP$9$kMpN.3H;678?t$G$"$j(B, $E$ $B$O(B $B%5%V%0%j%C%I%9%1!<%k$NMpN.1?F0%(%M%k%.!<(B
$\displaystyle E = \frac{1}{2}
\overline{(u^{\prime})^{2} + (w^{\prime})^{2}}
= \frac{{K_{m}}^{2}}{C_{m}^{2} l^{2}}$     (1.23)

$B$G$"$k(B.

1.4.2 $BG.NO3X$N<0$N3H;69`(B

Klemp and Wilhelmson (1978) $B$*$h$S(B CReSS ($BDZLZ$H:g86(B, 2001) $B$HF1MM$K(B, 1.5 $B
$\displaystyle Turb.{\theta}$ $\textstyle =$ $\displaystyle - \DP{}{x_{j}} \overline{u_{i}^{\prime} \theta^{\prime}}$  
  $\textstyle =$ $\displaystyle - \DP{}{x_{j}} \left(K_{h}\DP{\theta}{x_{j}}\right)
.$ (1.24)

$B$3$3$G(B $K_{h}$ $B$O290L$KBP$9$kMpN.3H;678?t$G$"$k(B.

1.4.3 $BMpN.1?F0%(%M%k%.!<$N<0(B

Klemp and Wilhelmson (1978) $B$*$h$S(B CReSS ($BDZLZ$H:g86(B, 2001) $B$HF1MM$K(B, 1.5 $B

$\displaystyle \DP{K_{m}}{t}$ $\textstyle =$ $\displaystyle - \left(
u \DP{K_{m}}{x} + w \DP{K_{m}}{z}
\right)
- \frac{3 g C_{m}^{2} l^{2}}{ 2 \overline{\theta_{v}}}
\left(\DP{\theta_{el}}{z} \right)$  
    $\displaystyle + \left( C_{m}^{2} l^{2} \right) \left\{
\left( \DP{u}{x} \right)^{2}
+ \left( \DP{w}{z} \right)^{2}
\right\}$  
    $\displaystyle + \frac{ C_{m}^{2} l^{2} }{2}
\left( \DP{u}{z} + \DP{w}{x}\right)^{2}
- \frac{K_{m}}{3}
\left( \DP{u}{x} + \DP{w}{z} \right)$  
    $\displaystyle + \Dinv{2}
\left(\DP[2]{K_{m}^{2}}{x}
+ \DP[2]{K_{m}^{2}}{z}
\right)
+ \left(\DP{K_{m}}{x}\right)^{2}
+ \left(\DP{K_{m}}{z}\right)^{2}$  
    $\displaystyle - \Dinv{2 l^{2}} K_{m}^{2}$ (1.25)

$B$3$3$G(B $C_{\varepsilon} = C_{m} = 0.2$, $B:.9g5wN%(B $l = \left(\Delta x \Delta z \right)^{1/2}$ $B$H$9$k(B. $B$?$@$7(B $\Delta x, \Delta z$ $B$O$=$l$>$l?eJ?$*$h$S1tD>3J;R4V3V$G$"$k(B. $\theta_{el}$ $B$O0J2<$N$h$&$KDj5A$9$k(B
$\displaystyle \theta_{el}$ $\textstyle =$ $\displaystyle \overline{ \theta_{v}} + \theta_{v}^{'} \;\;\; (for \;\; q_{c} = 0)$ (1.26)
$\displaystyle \theta_{el}$ $\textstyle =$ $\displaystyle \overline{\theta_{v}} + \theta_{v}^{'} + \frac{ \sum L
q_{v}}{{c_p}_{d} \bar{\pi}}
\;\;\; (for \;\; q_{c} > 0)$ (1.27)

$B$?$@$7(B,
$\displaystyle \overline{\theta_{v}} + \theta_{v}^{'}$ $\textstyle =$ $\displaystyle \bar{\theta_{v}}
\left\{
1 + \frac{\theta}{\bar{\theta}}
+ \frac{...
...}
- \frac{\sum q_{v} + \sum q_{c} + \sum q_{r}}
{1 + \sum \bar{q_{v}}}
\right\}$ (1.28)

$B$G$"$k(B.

1.4.4 $B;60o2CG.9`$NI=8=(B

$B;60o2CG.9`(B $Q_{dis}$ $B$O(B, $BMpN.1?F0%((B $B%M%k%.!<$N;60o9`$r$b$H$K(B, $B0J2<$N$h$&$KM?$($k(B.

\begin{displaymath}
Q_{dis} = \frac{1}{\overline{c_{p}}}\frac{C_{\varepsilon}}{l}
\frac{K_{m}^{3}}{(C_{m}l)^{3}}.
\end{displaymath} (1.29)

$B$3$3$G(B $l=(\Delta x\Delta z)^{1/2}$ $B$G$"$k(B.


next up previous
: 2. $B;29MJ88%(B : $B<>=aBg5$$K$*$1$k(B 2 $B : $B<>=aBg5$$K$*$1$k(B 2 $B
Odaka Masatsugu $BJ?@.(B19$BG/(B9$B7n(B11$BF|(B