next up previous
: B. $BMpN.%Q%i%a%?%j% : $B<>=aBg5$$K$*$1$k(B 2 $B : 2. $B;29MJ88%(B


A. $B=`05=LJ}Dx<07O$NF3=P(B

A.1 $B4pACJ}Dx<0(B

$BCO5eBg5$$K$*$1$k<>=aBPN.$NDj<02=F1MM(B, $BBg5$$N4%[email protected],$H<>[email protected],$N(B $BJ,;RNL$N:9$OL)EY$N<0$K$O9MN8$9$k$,(B, $BG.$N<0$K$O9MN8$7$J$$$h$&$J(B $B7O$r9M$($k(B. $B$3$N7O$G$OBg5$$NG.%(%M%k%.!<$O4%AgBg5$$NG.%(%M%k%.!<$G(B $B7h$^$k$3$H$K$J$k(B. $B$3$N$h$&$J7O$G$O290L(B $\theta $ $B$,J]B8NL$H$7$F;H$($k(B.

A.1.1 $B5$29(B $T$, $BL)EY(B $\rho $, $BIwB.(B $u, w$ $B$rM=JsJQ?t$H$9$k>l9g(B

$B?eJ?1tD>(B 2 $BuBV$r(B $B5$29(B $T$, $B05NO(B $p$, $BIwB.(B $u, w$, $BL)EY(B $\rho $ $B$GI=8=$9$k>l9g(B, $B4pACJ}Dx<07O$O0J2<$N$h$&$K$J$k(B.

$B1?F0J}Dx<0(B
 
    $\displaystyle \DD{u}{t} + \Dinv{\rho}\DP{p}{x} = Turb.u$ (A.1)
    $\displaystyle \DD{w}{t} + \Dinv{\rho}\DP{p}{z} = -g + Turb.w$ (A.2)

$BO"B3$N<0(B
 
$\displaystyle \DD{\rho}{t} + \rho\left( \DP{u}{x} + \DP{w}{z}\right) = 0$     (A.3)

$BL)EY$N<0(B($B>uBVJ}Dx<0(B)
 
$\displaystyle \rho = \frac{p}{R_{d} T_{v}}$     (A.4)

$BG.$N<0(B
 
$\displaystyle {c_{p}}_{d}\DD{T}{t} - \Dinv{\rho_{d}} \DD{p}{t} = Q + Turb.T$     (A.5)

mail protected],$N:.9gHfJ]B8<0(B
 
    $\displaystyle \DD{q_{v}}{t} = Src.q_{v} + Turb.q_{v}$ (A.6)
    $\displaystyle \DD{q_{c}}{t} = Src.q_{c} + Turb.q_{c}$ (A.7)
    $\displaystyle \DD{q_{r}}{t} = Src.q_{r} + Fall.q_{r} + Turb.q_{r}$ (A.8)

$B$3$3$G(B $R_{d}$, ${c_{p}}_{d}$, $\rho_{d}$ $B$OC10L $B$OHsCGG.2CG.(B, $q_{v}$ mail protected],$N:.9gHf(B, $q_{c}$ $B$O1@?e:.9gHf(B, $q_{r}$ $B$O1+?e:.9gHf$G$"$k(B. $q_{v}, q_{r}, q_{c}$ $B$O(B, mail protected],$N?t$@$1B8:_$9$k(B. $Turb$, $Src$, $Fall$ $B$rIU$1$?9`$O$=$l$>$l(B $B3H;69`(B, $B@8@.>CLG9`(B, $BMn2<9`$r0UL#$9$k(B.

$BL)EY$N<[email protected],$N:.9gHf$,9MN8$5$l$F$$$k(B.

$\displaystyle \rho$ $\textstyle =$ $\displaystyle \rho_{d} + \sum \rho_{v} + \sum \rho_{c} + \sum \rho_{r}$  
  $\textstyle =$ $\displaystyle \rho_{d} (1 + \sum q_{v} + \sum q_{c} + \sum q_{r} ).$ (A.9)

$B$?$@$7(B, $q_v = \rho_v/\rho_{d}$, $q_{c}$, $q_{r}$ $B$O$=$l$>$l(B, $B6E=L@-5$BN(B, $B1@?e(B, $B1+?e$N:.9gHf$r0UL#$9$k(B. $B$3$3$G4%[email protected],$NJ,05(B $p_{d}$ $B$O(B.
$\displaystyle p_{d}$ $\textstyle =$ $\displaystyle p \left( 1 - \frac{\sum p_{v}}{p} \right)$  
  $\textstyle =$ $\displaystyle p \left( 1 - \frac{\sum p_{v}}{p_{d} + \sum p_{v} }\right)$  
  $\textstyle =$ $\displaystyle p \left( 1 - \frac{\sum \rho_{v} R_{v} T}{\rho_{d} R_{d}T + \sum
\rho_{v} R_{v} T }\right)$  
  $\textstyle =$ $\displaystyle p \left( 1 - \frac{\sum q_{v}/M_{v}}{1/M_{d} + \sum q_{v}/M_{v}
}\right)$  

$B$H$J$k$N$G(B,
$\displaystyle \rho_{d}
= \frac{p_{d}}{R_{d} T}
= \frac{p}{R_{d} T} \left(\frac{1/M_{d}}{1/M_{d} + \sum q_{v}/M_{v}
}\right)$     (A.10)

$B$G$"$k(B. $BC"$7(B $M$ $B$OJ,;RNL$rI=$7(B, mail protected],$NBN@Q$OL5;k$G$-$k$b$N$H8+$J$7$?(B. (A.9), (A.10) $B<0$h$j(B,
$\displaystyle \rho$ $\textstyle =$ $\displaystyle \frac{p}{R_{d}T}
\left( \frac{1/M_{d}}{1/M_{d} + \sum q_{v}/M_{v} }\right)
(1 + \sum q_{v} + \sum q_{c} + \sum q_{r} )$ (A.11)

$B$H$J$k(B.
$\displaystyle f \equiv
\left(\frac{1/M_{d}}{1/M_{d} + \sum q_{v}/M_{v} }\right)
(1 + \sum q_{v} + \sum q_{x} )$      

$B$HDj5A$9$k$H(B, (A.11) $B<0$O0J2<$N$h$&$K=q$1$k(B.
$\displaystyle \rho$ $\textstyle =$ $\displaystyle \frac{p}{R_{d} (T/f)}$ (A.12)

$B$^$?(B, $B290L$H%(%/%9%J!<4X?t$rMQ$$$FI=8=$9$k$H(B,
$\displaystyle \rho$ $\textstyle =$ $\displaystyle \frac{p}{R_{d} \pi (\theta /f )}$  
  $\textstyle =$ $\displaystyle \frac{p_{0} \pi^{{c_{v}}_{d}/R_{d}}}{R_{d} (\theta/f)}$ (A.13)

$B$G$"$k(B. $BC"$7%(%/%9%J!<4X?t(B $\pi $ $B$O(B $\pi = T/\theta$ $B$N4X78$rK~$?$9(B.

$B290L$O4%AgCGG.>uBV$K$*$1$kJ]B8NL$G$"$k(B. $B4%AgCGG.>uBV$rI=$9G.NO3X$N<0$O(B

$\displaystyle c_{p}dT - \alpha dp = 0$     (A.14)

$B$G$"$k(B. $B$3$3$G(B $T$ $B$O29EY(B, $p$ $B$O05NO(B, $c_{p}$ $B$OC10L $B$OHfMF$G$"$k(B. (A.14) $B<0$N(B $\alpha$ $B$O(B, $BM}A[5$BN$N>uBVJ}Dx<0$rMQ$$$k$H(B,
$\displaystyle \alpha = \frac{RT}{p}$     (A.15)

$B$H=q$1$k(B. $B$3$3$G(B $M$ $B$OJ,;RNL(B, $R$ $B$O5$BNDj?t$G$"$k(B. (A.14) $B<0$K(B (A.15) $B<0$rBeF~$7@0M}$9$k$H(B,
$\displaystyle \frac{c_{p}}{T}dT - \frac{R}{p} dp = 0$     (A.16)

$B$H$J$k(B. $B6E=L$r@8$8$J$$>l9g$K$O5$2t$NAH@.$OJQ2=$7$J$$$N$G(B $c_{p}$ $B$H(B $R$ $B$O6&$K(B $p$ $B$K0MB8$7$J$$(B. $B0lHL$K(B $c_{p}$ $B$O(B $T$ $B$N4X?t$G$"$k$,(B, $c_{p}$ $B$rDj?t$H$_$J$9$H(B,
$\displaystyle \int^{T_{0}}_{T} \Dinv{T}dT$ $\textstyle =$ $\displaystyle \frac{R}{c_{p}} \int^{p_{0}}_{p} \Dinv{p} dp$  
$\displaystyle \ln{(T_{0}/T)}$ $\textstyle =$ $\displaystyle \frac{R}{c_{p}} \ln{(p_{0}/p)}$  
$\displaystyle \theta$ $\textstyle =$ $\displaystyle T \left(\frac{p_{0}}{p}\right)^\frac{R}{c_{p}}$ (A.17)

$B$H$J$j(B, $B290L$,F@$i$l$k(B.

A.1.2 $B290L(B $\theta $, $B05NO(B $p$, $BIwB.(B $u, w$ $B$rM=JsJQ?t$H$9$k>l9g(B

$B?eJ?1tD>(B 2 $BuBV$r(B $B290L(B $\theta $, $B05NO(B $p$, $BIwB.(B $u, w$, $BL)EY(B $\rho $ $B$GI=8=$9$k>l9g(B, $B4pACJ}Dx<07O$O0J2<$N$h$&$K$J$k(B. CReSS($BDZLZ$H:g86(B, 2001)$B$G$O(B, $B$3$N4pACJ}Dx<0$rMQ$$$F$$$k(B.

$B1?F0J}Dx<0(B
 
    $\displaystyle \DD{u}{t} + \Dinv{\rho}\DP{p}{x} = Turb.u$ (A.18)
    $\displaystyle \DD{w}{t} + \Dinv{\rho}\DP{p}{z} = -g + Turb.w$ (A.19)

$B05NOJ}Dx<0(B
 
$\displaystyle \DD{p}{t} = \rho {C_{s}}^{2}
\left\{
- \Ddiv{\Dvect{u}}
+ \Dinv{\...
...\DP{f}{q_{c}} \DD{q_{c}}{t}
+ \sum \DP{f}{q_{r}} \DD{q_{r}}{t}
\right)
\right\}$     (A.20)

$BL)EY$N<0(B($B>uBVJ}Dx<0(B)
 
$\displaystyle \rho = \frac{p_{0}}{R_{d} \theta_{v}}
\left( \frac{p}{p_{0}}\right)^{{c_{v}}_{d}/{c_{p}}_{d}}$     (A.21)

$BG.$N<0(B
 
$\displaystyle \DD{\theta}{t} = Q + Turb.\theta$     (A.22)

mail protected],$N:.9gHf$NJ]B8<0(B
 
    $\displaystyle \DD{q_{v}}{t} = Src.q_{v} + Turb.q_{v}$ (A.23)
    $\displaystyle \DD{q_{c}}{t} = Src.q_{c} + Turb.q_{c}$ (A.24)
    $\displaystyle \DD{q_{r}}{t} = Src.q_{r} + Fall.q_{r} + Turb.q_{r}$ (A.25)

$B$?$@$7290L(B $\theta $ $B$O(B
$\displaystyle \theta \equiv T \left(\frac{p_{0}}{p}\right)^{R_{d}/{c_{p}}_{d}}$     (A.26)

$B$G$"$j(B, $B2>290L(B $\theta_{v}$ $B$O(B,
$\displaystyle \theta_{v} \equiv \frac{\theta}{f}$     (A.27)

$B$G$"$k(B. $B2;B.(B $C_{s}$ $B$O(B
$\displaystyle {C_{s}}^{2}
\equiv \frac{{c_{p}}_{d}}{{c_{v}}_{d}} R_{d} T_{v}
= \frac{{c_{p}}_{d}}{{c_{v}}_{d}} R_{d} \frac{T}{f}$     (A.28)

$B$G$"$k(B. ${c_{p}}_{d}$ $B$H(B ${c_{v}}_{d}$ $B$O$=$l$>$lC10L ${c_{v}}_{d} + R_{d} = {c_{p}}_{d}$ $B$H$$$&(B $B4X78$K$"$k(B.

$B05NOJ}Dx<0$OL)EY$N<0$HO"B3$N<0$rAH$_9g$o$;$k$3$H$GF@$i$l$k(B. $B$^$:L)EY$r(B $\rho= \rho(\theta,p,q_{v},q_{x})$ $B$H$7$F(B $\rho $ $B$NA4HyJ,$r5a$a$k(B.

$\displaystyle d\rho$ $\textstyle =$ $\displaystyle d \left[
\frac{p_{0}}{R_{d} \theta_{v}}
\left( \frac{p}{p_{0}} \right)^{{c_{v}}_{d}/{c_{p}}_{d}}
\right]$  
  $\textstyle =$ $\displaystyle d \left[
\frac{p_{0}}{R_{d} (\theta / f) }
\left( \frac{p}{p_{0}} \right)^{{c_{v}}_{d}/{c_{p}}_{d}}
\right]$  
  $\textstyle =$ $\displaystyle \frac{p_{0} }{R_{d} (\theta/f)}
\frac{{c_{v}}_{d}}{{c_{p}}_{d}}
\...
...t( \frac{p}{p_{0}} \right)^{{c_{v}}_{d}/{c_{p}}_{d}}
\frac{d\theta}{\theta^{2}}$  
    $\displaystyle +
\frac{p_{0}}{R_{d} \theta}
\left( \frac{p}{p_{0}} \right)^{{c_{...
...{q_{v}} dq_{v}
+ \sum \DP{f}{q_{c}} dq_{c}
+ \sum \DP{f}{q_{r}} dq_{r}
\right\}$  
  $\textstyle =$ $\displaystyle \Dinv{{C_{s}}^{2}} dp
- \frac{\rho}{\theta} d\theta
+ \sum \frac{...
... \frac{\rho}{f} \DP{f}{q_{c}} dq_{c}
+ \sum \frac{\rho}{f} \DP{f}{q_{r}} dq_{r}$ (A.29)

$B$H$J$k(B. (A.29) $B<0$r05NO$N<0$H$7$F@0M}$9$k$H(B,
$\displaystyle \DD{p}{t}
= {C_{s}}^{2}
\left(
\DD{\rho}{t}
+ \frac{\rho}{\theta}...
...rho}{f} \DP{f}{q_{c}} dq_{c}
- \sum \frac{\rho}{f} \DP{f}{q_{r}} dq_{r}
\right)$      

$B$G$"$j(B, $BO"B3$N<0$rMQ$$$k$H(B,
$\displaystyle \DD{p}{t}
= \rho {C_{s}}^{2}
\left(
- \Ddiv \Dvect{u}
+ \Dinv{\th...
...\sum \Dinv{f} \DP{f}{q_{c}} dq_{c}
- \sum \Dinv{f} \DP{f}{q_{r}} dq_{r}
\right)$      

$B$H$J$j(B, $B05NOJ}Dx<0$,F@$i$l$k(B.

A.1.3 $B290L(B $\theta $, $BL5, $BIwB.(B $u, w$ $B$rM=JsJQ?t$H$9$k>l9g(B

$B?eJ?1tD>(B 2 $BuBV$r(B $B290L(B $\theta $, $BL5, $BIwB.(B $u, w$, $BL)EY(B $\rho $ $B$GI=8=$9$k>l9g(B, $B4pACJ}Dx<07O$O0J2<$N$h$&$K$J$k(B. $BO"B3$N<0(B (A.3) $B$H>uBVJ}Dx<0(B (A.21) $B$rMQ$$$k$3$H$GF@$i$l$k05NOJ}Dx<0$rMxMQ$9$k(B. Klemp and Willhelmson (1978)$B$G$O(B, $B$3$N4pACJ}Dx<0$rMQ$$$F$$$k(B.

$B1?F0J}Dx<0(B
 
    $\displaystyle \DD{u}{t} + {{c_{p}}_{d}} \theta_{v} \DP{\pi}{x} = Turb.u$ (A.30)
    $\displaystyle \DD{w}{t} + {{c_{p}}_{d}} \theta_{v} \DP{\pi}{z} = -g + Turb.w$ (A.31)

$B05NOJ}Dx<0(B
 
$\displaystyle \DD{\pi}{t}
= \frac{{C_{s}}^{2}}{ {c_{p}}_{d} \rho \theta_{v} }
\...
...\DP{f}{q_{c}} \DD{q_{c}}{t}
+ \sum \DP{f}{q_{r}} \DD{q_{r}}{t}
\right)
\right\}$     (A.32)

$B>uBVJ}Dx<0(B
 
$\displaystyle \rho = \frac{p_{0} \pi^{{c_{v}}_{d}/R_{d}}}{R_{d} \theta_{v}}$     (A.33)

$BG.$N<0(B
 
$\displaystyle \DD{\theta}{t} = Q + Turb.\theta$     (A.34)

$B?e>x5$$*$h$S?eJ*
 
    $\displaystyle \DD{q_{v}}{t} = Src.q_{v} + Turb.q_{v}$ (A.35)
    $\displaystyle \DD{q_{x}}{t} = Src.q_{c} + Turb.q_{c}$ (A.36)
    $\displaystyle \DD{q_{x}}{t} = Src.q_{r} + Fall.q_{x} + Turb.q_{r}$ (A.37)

$B$?$@$7(B, $B%(%/%9%J!<4X?t(B $\pi $ $B$O(B,
$\displaystyle \pi \equiv \frac{T}{\theta}
= \left( \frac{p}{p_{0}} \right)^{R_{d}/{c_{p}}_{d}}$     (A.38)

$B$G$"$j(B, $B2;B.(B $C_{s}$ $B$O(B
$\displaystyle {C_{s}}^{2}
\equiv \frac{{c_{p}}_{d}}{{c_{v}}_{d}} R_{d} \pi \theta_{v}
= \frac{{c_{p}}_{d}}{{c_{v}}_{d}} R_{d} \pi
\left( \frac{\theta}{f} \right)$     (A.39)

$B$G$"$k(B.

$B1?F0J}Dx<0$N05NO8{G[$O(B, $B290L$H%(%/%9%J!<4X?t$rMQ$$$k$3$H$GF@$i$l$k(B.

$\displaystyle \Dinv{\rho} dp$ $\textstyle =$ $\displaystyle \frac{R_{d} \pi (\theta/f)}{p}
d \left(
p_{0} \pi^{{c_{p}}_{d}/R_{d}}
\right)$  
  $\textstyle =$ $\displaystyle \frac{R_{d} \pi (\theta/f) }{p}
\left(
\frac{p_{0} {c_{p}}_{d}}{R_{d}} \pi^{{c_{p}}_{d}/R - 1}
\right)
d\pi$  
  $\textstyle =$ $\displaystyle \frac{R_{d} \pi (\theta/f) }{p}
\left(
\frac{{c_{p}}_{d}}{R_{d}} p \pi^{-1}
\right)d\pi$  
  $\textstyle =$ $\displaystyle {c_{p}}_{d} (\theta/f) d\pi$  
  $\textstyle =$ $\displaystyle {c_{p}}_{d} \theta_{v} d\pi$ (A.40)

$B05NOJ}Dx<0$OL)EY$N<0$HO"B3$N<0$rAH$_9g$o$;$k$3$H$GF@$i$l$k(B. $B$^$:L)EY$r(B $\rho= \rho(\theta, \pi, q_{v}, q_{x})$ $B$H$7$F(B $\rho $ $B$NA4HyJ,$r7W;;$9$k(B.

$\displaystyle d\rho$ $\textstyle =$ $\displaystyle d \left[
\frac{p_{0} \pi^{c_{v/R_{d}}}}{R_{d} \theta_{v}}
\right]$  
  $\textstyle =$ $\displaystyle d \left[
\frac{p_{0} \pi^{c_{v/R_{d}}}}{R_{d} (\theta/f)}
\right]$  
  $\textstyle =$ $\displaystyle \frac{p_{0}}{R_{d} (\theta/f) }
\pi^{(c_{v/R_{d}}-1)}
\frac{{c_{v...
..._{d}}
d\pi
-
\frac{p_{0} \pi^{c_{v/R_{d}}} f}{R_{d}}
\frac{d\theta}{\theta^{2}}$  
    $\displaystyle +
\frac{p_{0} \pi^{c_{v/R_{d}}} }{R_{d} \theta}
\left(
\sum \DP{f}{q_{v}} dq_{v}
+ \sum \DP{f}{q_{c}} dq_{c}
+ \sum \DP{f}{q_{r}} dq_{r}
\right)$  
  $\textstyle =$ $\displaystyle {c_{p}}_{d} (\theta/f)
\left( \frac{{c_{v}}_{d}}{{c_{p}}_{d} R_{d...
...d\pi
-
\frac{p_{0} \pi^{c_{v/R_{d}}} }{R_{d} (\theta/f)}
\frac{d\theta}{\theta}$  
    $\displaystyle +
\Dinv{f}
\left(
\frac{p_{0} \pi^{c_{v/R_{d}}} }{R_{d} (\theta /...
...}{q_{v}} dq_{v}
+ \sum \DP{f}{q_{c}} dq_{c}
+ \sum \DP{f}{q_{r}} dq_{r}
\right)$  
  $\textstyle =$ $\displaystyle \frac{ {c_{p}}_{d} \rho (\theta/f)}{{C_{s}}^{2} } d\pi
- \frac{\r...
...}{q_{v}} dq_{v}
+ \sum \DP{f}{q_{c}} dq_{c}
+ \sum \DP{f}{q_{r}} dq_{r}
\right)$  
  $\textstyle =$ $\displaystyle \frac{ {c_{p}}_{d} \rho \theta_{v}}{{C_{s}}^{2} } d\pi
- \frac{\r...
...}{q_{v}} dq_{v}
+ \sum \DP{f}{q_{c}} dq_{c}
+ \sum \DP{f}{q_{r}} dq_{r}
\right)$ (A.41)

$B$H$J$k(B. (A.41) $B<0$r05NO$N<0$H$7$F@0M}$9$k$H(B,
$\displaystyle \DD{\pi}{t}
=
\frac{{C_{s}}^{2} }{{c_{p}}_{d} \rho \theta_{v} }
\...
...dq_{v}
+ \sum \DP{f}{q_{c}} dq_{c}
+ \sum \DP{f}{q_{r}} dq_{r}
\right)
\right\}$     (A.42)

$B$H$J$j(B, $BO"B3$N<0$rMQ$$$k$H(B,
$\displaystyle \DD{\pi}{t}
= \frac{{C_{s}}^{2} }{{c_{p}}_{d} \rho \theta_{v} }
\...
...dq_{v}
+ \sum \DP{f}{q_{c}} dq_{c}
+ \sum \DP{f}{q_{r}} dq_{r}
\right)
\right\}$     (A.43)

$B$H$J$j(B, $B05NOJ}Dx<0$,F@$i$l$k(B.

A.2 $B=`05=LJ}Dx<07O$NF3=P(B

$B=`05=LJ}Dx<07O$G$O(B, $BJQ?t$r4pK\>l$H>qMp>l$KJ,N%$7(B, $B@~7A2=$r9T$&(B.

A.2.1 $B4pK\>l$H>qMp>l$NJ,N%(B

$BJQ?t$r4pK\>l$H>qMp>l$KJ,N%$7(B, $B4pK\>l$O@E?e05J?9U$K$"$k$H2>Dj$9$k(B. $B$3$N;~(B, $BJQ?t$O0J2<$N$h$&$K=q$1$k(B.

    $\displaystyle u = u^{'}(x,z,t)$  
    $\displaystyle w = w^{'}(x,z,t)$  
    $\displaystyle \pi = \bar{\pi}(z) + \pi^{'}(x,z,t)$  
    $\displaystyle \theta_{v} = \bar{\theta_{v}}(z) + {\theta_{v}}^{'}(x,z,t)$  
    $\displaystyle \rho = \bar{\rho}(z) + \rho^{'}(x,z,t)$  
    $\displaystyle q_{v} = \bar{q_{v}}(z) + q_{v}^{'}(x,z,t)$  
    $\displaystyle q_{r} = q_{r}^{'}(x,z,t)$  
    $\displaystyle q_{c} = q_{c}^{'}(x,z,t)$  

$BC"$7(B, $\theta_{v} = \theta/f$ $B$H$7(B, $B4pK\>l$NIwB.(B $u, w$ $B$H1@N3:.9gHf$H1+N3:.9g$O%<%m$H8+$J$7$?(B. $B$=$7$F4pK\>l$K$O@E?e05J?9U(B,
$\displaystyle \DP{\bar{\pi}}{z}
= - \frac{g}{{c_{p}}_{d} \bar{\theta_{v}}}
= - \frac{g}{{c_{p}}_{d} (\bar{\theta}/\bar{f})}$     (A.44)

$B$N4X78$,@.$jN)$D$b$N$H$9$k(B.

A.2.2 $B?eJ?J}8~$N1?F0J}Dx<0$N@~7A2=(B

$B?eJ?J}8~$N1?F0J}Dx<0$r4pK\>l$H>qMp>l$KJ,N%$9$k(B.

$\displaystyle \DP{u^{'}}{t} =
- \left(
u^{'} \DP{u^{'}}{x}
+ w^{'} \DP{u^{'}}{z...
..._{v}}^{'} \DP{\bar{\pi}}{x}
+ {\theta_{v}}^{'} \DP{\pi^{'}}{x}
\right)
+ Turb.u$      

$B>e<0$K$*$$$F0\N.9`0J30$N(B 2 $B.9`$r>C5n$7(B, $B$5$i$K4pK\>l$O(B $x$ $BJ}8~$K(B $B$OJQ2=$7$J$$$3$H$rMxMQ$9$k$H(B, $B0J2<$N>[email protected],$N<0$,F@$i$l$k(B.
$\displaystyle \DP{u^{'}}{t}$ $\textstyle =$ $\displaystyle - \left(
u^{'} \DP{u^{'}}{x}
+ w^{'} \DP{u^{'}}{z}
\right)
- {c_{p}}_{d} \bar{\theta_{v}} \DP{\pi^{'}}{x} + Turb.u$  
  $\textstyle =$ $\displaystyle - \left(
u^{'} \DP{u^{'}}{x}
+ w^{'} \DP{u^{'}}{z}
\right)
-{c_{p}}_{d} \left( \frac{\bar{\theta}}{\bar{f}}\right)
\DP{\pi^{'}}{x}
+ Turb.u$ (A.45)

$B$3$3$G(B $\bar{f}$ $B$O(B,
$\displaystyle \bar{f} =
{\left(
1 - \frac{\sum \bar{q_{v}}/M_{v}}{1/M_{d} + \sum \bar{q_{v}}/M_{v}}
\right)
(1 + \sum \bar{q_{v}} )}$     (A.46)

$B$G$"$k(B.

A.2.3 $B1tD>J}8~$N1?F0J}Dx<0$N@~7A2=(B

$B1tD>J}8~$N1?F0J}Dx<0$r4pK\>l$H>qMp>l$KJ,N%$9$k(B.

$\displaystyle \DP{w^{'}}{t} =
- \left(
u^{'} \DP{w^{'}}{x}
+ w^{'} \DP{w^{'}}{z...
...}^{'} \DP{\bar{\pi}}{z}
+ {\theta_{v}}^{'} \DP{\pi^{'}}{z}
\right)
- g
+ Turb.w$      

$B>e<0$K$*$$$F0\N.9`0J30$N(B 2 $B.9`$r>C5n$9$k$H0J2<$H$J$k(B.
$\displaystyle \DP{w^{'}}{t} =
- \left(
u^{'} \DP{w^{'}}{x}
+ w^{'} \DP{w^{'}}{z...
...v}} \DP{\pi^{'}}{z}
+ {\theta_{v}}^{'} \DP{\bar{\pi}}{z}
\right)
- g
+ Turb.w .$      

$B$5$i$K@E?e05$N<0$rMxMQ$9$k$H0J2<$H$J$k(B.
$\displaystyle \DP{w^{'}}{t}$ $\textstyle =$ $\displaystyle - \left(
u^{'} \DP{w^{'}}{x}
+ w^{'} \DP{w^{'}}{z}
\right)
+ {c_{...
...eta_{v}}^{'}
\left( \frac{g}{{c_{p}}_{d} \bar{\theta_{v}}} \right)
- g + Turb.w$  
  $\textstyle =$ $\displaystyle - \left(
u^{'} \DP{w^{'}}{x}
+ w^{'} \DP{w^{'}}{z}
\right)
- {c_{...
...eta_{v}} \DP{\pi^{'}}{z}
+ \frac{{\theta_{v}}^{'}}{\bar{\theta_{v}}} g
+ Turb.w$  

$B$3$3$G(B ${\theta_{v}}^{'}$ $B$O(B,
$\displaystyle {\theta_{v}}^{'}$ $\textstyle =$ $\displaystyle \Dinv{f}
\left\{
\theta^{'}
- \sum \frac{\theta}{f} \DP{f}{q_{v}}...
...DP{f}{q_{c}} q_{c}^{'}
- \sum \frac{\theta}{f} \DP{f}{q_{r}} q_{r}^{'}
\right\}$  
  $\textstyle =$ $\displaystyle \Dinv{f}
\left\{
\frac{\theta^{'}}{\theta}
- \sum \Dinv{f} \DP{f}...
...inv{f} \DP{f}{q_{c}} q_{c}^{'}
- \sum \Dinv{f} \DP{f}{q_{r}} q_{r}^{'}
\right\}$ (A.47)

$B$G$"$j(B, (A.47) $B<0$NBh(B 2 $B9`$r7W;;$9$k$H(B,
$\displaystyle \sum \Dinv{f}\DP{f}{q_{v}}$ $\textstyle =$ $\displaystyle \Dinv{\frac{1/M_{d}}{1/M_{d} + \sum q_{v}/M_{v}}
(1 + \sum q_{v} ...
...{1/M_{d} + \sum q_{v}/M_{v}}
(1 + \sum q_{v} + \sum q_{c} + \sum q_{r})}{q_{v}}$  
  $\textstyle =$ $\displaystyle \Dinv{\frac{1/M_{d}}{1/M_{d} + \sum q_{v}/M_{v}}
(1 + \sum q_{v} + \sum q_{c} + \sum q_{r})}$  
    $\displaystyle \left[
\frac{1/M_{d}}{1/M_{d} + \sum q_{v}/M_{v}}
-
\left\{
\frac...
...m q_{v}/M_{v})^{2}}
(1 + \sum q_{v} + \sum q_{c} + \sum q_{r})
\right\}
\right]$  
  $\textstyle =$ $\displaystyle \Dinv{1 + \sum q_{v} + \sum q_{c} + \sum q_{r}}
- \frac{\sum 1/M_{v}}{1/M_{d} + \sum q_{v}/M_{v}}$  

$B$G$"$j(B, (A.47) $B<0$NBh(B 3 $B9`$r7W;;$9$k$H(B,
$\displaystyle \sum \Dinv{f}\DP{f}{q_{c}}$ $\textstyle =$ $\displaystyle \Dinv{\frac{1/M_{d}}{1/M_{d} + \sum q_{v}/M_{v}}
(1 + \sum q_{v} ...
...{1/M_{d} + \sum q_{v}/M_{v}}
(1 + \sum q_{v} + \sum q_{c} + \sum q_{r})}{q_{c}}$  
  $\textstyle =$ $\displaystyle \Dinv{1 + \sum q_{v} + \sum q_{c} + \sum q_{r}}$  

$B$G$"$j(B, (A.47) $B<0$NBh(B 4 $B9`$r7W;;$9$k$H(B,
$\displaystyle \sum \Dinv{f}\DP{f}{q_{r}}$ $\textstyle =$ $\displaystyle \Dinv{\frac{1/M_{d}}{1/M_{d} + \sum q_{v}/M_{v}}
(1 + \sum q_{v} ...
...{1/M_{d} + \sum q_{v}/M_{v}}
(1 + \sum q_{v} + \sum q_{c} + \sum q_{r})}{q_{r}}$  
  $\textstyle =$ $\displaystyle \Dinv{1 + \sum q_{v} + \sum q_{c} + \sum q_{r}}$  

$B$H$J$k$N$G(B,
$\displaystyle {\theta_{v}}^{'}
= \Dinv{f}
\left\{
\frac{\theta^{'}}{\theta}
+ \...
...q_{c}^{'} + \sum q_{r}^{'}}
{1 + \sum q_{v} + \sum q_{c} + \sum q_{r}}
\right\}$     (A.48)

$B$G$"$k(B. $B$3$3$G>[email protected],[email protected],$KHf$Y$F==J,$K>.$5$$$N$G(B, mail protected],$KCV$-49$($k$3$H$G(B,
$\displaystyle {\theta_{v}}^{'}
= \frac{\bar{\theta}}{\bar{f}}
\left\{
\frac{\th...
...um q_{v}^{'} + \sum q_{c}^{'} + \sum q_{r}^{'}}
{1 + \sum \bar{q_{v}}}
\right\}$     (A.49)

$B$H$J$k(B. $B$3$l$rMQ$$$k$H(B, $B>[email protected],$NB.EY(B $w$ $B$N<0$O0J2<$N$h$&$K=q$1$k(B.
$\displaystyle \DP{w^{'}}{t}$ $\textstyle =$ $\displaystyle - \left(
u^{'} \DP{w^{'}}{x}
+ w^{'} \DP{w^{'}}{z}
\right)
- {c_{p}}_{d} \bar{\theta_{v}} \DP{\pi^{'}}{z}$  
    $\displaystyle +
\left(
\frac{\theta^{'}}{\bar{\theta}}
+ \frac{\sum q_{v}^{'}/M...
...'} + \sum q_{c}^{'} + \sum q_{r}^{'}}
{1 + \sum \bar{q_{v}}}
\right) g
+ Turb.w$  

A.2.4 $B05NOJ}Dx<0$N@~7A2=(B

Klemp and Wilhelmson (1978) $B$G$O(B, $BHsCGG.E*$J2CG.$K$h$kG.KDD%$H(B $B6E=L$KH<$&05NOJQ2=$rL5;k$7(B,

$\displaystyle \DD{\pi}{t}
=
- \frac{{C_{s}}^{2}}{ {c_{p}}_{d} (\theta/f)}
\Ddiv \Dvect{u}$      

$B$H$7$FDj<02=$7$?(B. $BK\%b%G%k$G9M$($k7O$G$O(B, mail protected],$,==J,$K>.$5$$$N$G(B, $B$3$N6a;w$rMQ$$$k$3$H$H$7$?(B.

$B05NOJ}Dx<0$K4X$7$F(B, mail protected],$H>[email protected],$KJ,$1$k(B. $B$?$@$7(B, $B>[email protected],$OJ?6Q@.(B $BJ,$h$j$b==J,>.$5$$$H$$$&2>Dj$rMQ$$(B, $1/\theta = 1/\bar{\theta}$, $1/f = 1/\bar{f}$ $B$H$9$k(B.

$\displaystyle \DP{\bar{\pi} + \pi^{'}}{t}
+ u^{'} \DP{\bar{\pi}+\pi^{'}}{x}
+ w...
...verline{{C_{s}}^{2} }}{ {c_{p}}_{d} (\bar{\theta}/\bar{f})}
\Ddiv \Dvect{u^{'}}$      

$B>e<0$G$O(B ${C_{s}}^{2}$ mail protected],$H>[email protected],$KJ,N%$7$F(B 2 $B.9`$r(B $BL5;k$9$k$H(B, $\overline{{C_{s}}^{2}}$ $B$HEy$7$/$J$k$3$H$rMxMQ$7$F$$$k(B.
$\displaystyle {C_{s}}^{2}$ $\textstyle =$ $\displaystyle \frac{{c_{p}}_{d}}{{c_{v}}_{d}} R_{d} (\bar{\pi} + \pi^{'})
\left( \frac{(\bar{\theta} + \theta^{'})}{\bar{f}} \right)$  
  $\textstyle \approx$ $\displaystyle \frac{{c_{p}}_{d}}{{c_{v}}_{d}} R_{d}
\left(
\bar{\pi} \frac{\bar...
...{\pi} \frac{\theta^{'}}{\bar{f}}
+ \pi^{'} \frac{\bar{\theta}}{\bar{f}}
\right)$  
  $\textstyle =$ $\displaystyle \frac{{c_{p}}_{d}}{{c_{v}}_{d}} R_{d}
\bar{\pi} \frac{\bar{\theta...
...left(
1 + \frac{\theta^{'}}{\bar{\theta}} + \frac{ \pi^{'} }{\bar{\pi}}
\right)$  
  $\textstyle \approx$ $\displaystyle \frac{{c_{p}}_{d}}{{c_{v}}_{d}} R_{d}
\bar{\pi} \frac{\bar{\theta}}{\bar{f}}
\equiv \overline{{C_{s}}^{2}}$ (A.50)

$B$?$@$7(B $\theta^{'}/\bar{\theta} \ll 1$, $\pi^{'}/\bar{\pi} \ll 1$ $B$G$"$k$3$H$rMQ$$$?(B. mail protected],$O(B $z$ $B$K$N$_0MB8$9$k$3$H$rMxMQ$7(B, $B$^$?(B 2 $B.9`$rL5;k$9$k(B.
$\displaystyle \DP{\pi^{'}}{t}
=
- w^{'} \DP{\bar{\pi}}{z}
- \frac{\overline{{C_{s}}^{2}} }{ {c_{p}}_{d} (\bar{\theta} /\bar{f})}
\Ddiv \Dvect{u^{'}}$      

$B$5$i$K(B $\pi $ $B$rM}A[5$BN$N>uBVJ}Dx<0$GJQ7A$7$F$^$H$a$k$H(B, $B05NO$N>[email protected],$N;~4VH/E8J}Dx<0$,F@$i$l$k(B.
$\displaystyle \DP{\pi^{'}}{t}$ $\textstyle =$ $\displaystyle - w^{'} \DP{}{z}
\left( \frac{\bar{\rho} R_{d}(\bar{\theta}/\bar{...
...{p}}_{d} (\bar{\theta}/\bar{f})}
\left( \DP{ u^{'}}{x} + \DP{ w^{'}}{z} \right)$  
  $\textstyle =$ $\displaystyle - w^{'}
\frac{R_{d}}{{c_{v}}_{d}} \bar{\pi}
\Dinv{\left( \frac{\b...
...c_{p}}_{d} (\bar{\theta}/\bar{f})}
\left( \DP{u^{'}}{x} + \DP{w^{'}}{z} \right)$  
  $\textstyle =$ $\displaystyle - \frac{\overline{{C_{s}}^{2}}}{{c_{p}}_{d} \bar{\rho} (\bar{\the...
...o} (\bar{\theta}/\bar{f})
\left( \DP{u^{'}}{x} + \DP{w^{'}}{z} \right)
\right\}$  
  $\textstyle =$ $\displaystyle - \frac{\overline{{C_{s}}^{2}}}{{c_{p}}_{d} \bar{\rho} (\bar{\the...
...f})^{2}}
\Ddiv \left\{
\bar{\rho} (\bar{\theta}/\bar{f}) \Dvect{u^{'}}
\right\}$  

$B0J>e$h$j(B,
$\displaystyle \DP{\pi^{'}}{t}=
- \frac{\overline{{C_{s}}^{2}}}{{c_{p}}_{d} \bar...
...f})^{2}}
\Ddiv \left\{
\bar{\rho} (\bar{\theta}/\bar{f}) \Dvect{u^{'}}
\right\}$     (A.51)

$B$G$"$k(B.

A.2.5 $BG.$N<0$N@~7A2=(B

$BG.$N<[email protected],$H>[email protected],$KJ,N%$9$k(B.

    $\displaystyle \DP{(\bar{\theta} + \theta^{'})}{t}
=
- u^{'}\DP{(\bar{\theta} + ...
...w^{'}\DP{(\bar{\theta} + \theta^{'})}{x}
+ Q + Turb.(\bar{\theta} + \theta^{'})$  

$B$3$3$GJ?6Q>l$NNL$O(B $z$ $B$N4X?t$G$"$k$3$H$rMQ$$$k$H(B,
    $\displaystyle \DP{\theta^{'}}{t}
=
- \left(
u^{'}\DP{\theta^{'}}{x}
+ w^{'}\DP{...
...}
\right)
- w^{'}\DP{\bar{\theta}}{x}
+ Q + Turb.\bar{\theta} + Turb.\theta^{'}$ (A.52)

$B$H$J$k(B.

A.2.6 $B:.9gHf$NJ]B8<0$N@~7A2=(B

mail protected],$N:.9gHf$NJ]B8<0$K$D$$$F$b(B, mail protected],$H>[email protected],$KJ,N%$9$k(B. $BG.$N<0$HF1MM$K(B, $B0J2<$N$h$&$K=q$1$k(B. $BC"$7(B, $B@[email protected]`(B, $BMn2<9`$O>[email protected],$N$_(B $BB8:_$9$k$H2>Dj$9$k(B. $B$3$N2>Dj$OJ?6Q>l$G$O6E=L$O@8$8$F$$$J$$$H9M$($k$3$H$K(B $BEy$7$$(B.

    $\displaystyle \DP{q_{v}^{'}}{t}
=
- \left(
u^{'}\DP{q_{v}^{'}}{x}
+ w^{'}\DP{q_...
...- w^{'}\DP{\bar{q_{v}}}{x}
+ Src.q_{v}^{'} + Turb.\bar{q_{v}} + Turb.q_{v}^{'},$ (A.53)
    $\displaystyle \DP{q_{c}^{'}}{t}
=
- \left(
u^{'}\DP{q_{c}^{'}}{x}
+ w^{'}\DP{q_{c}^{'}}{x}
\right)
+ Src.q_{c}^{'} + Turb.q_{c}^{'},$ (A.54)
    $\displaystyle \DP{q_{r}^{'}}{t}
= - \left(
u^{'}\DP{q_{r}^{'}}{x}
+ w^{'}\DP{q_{r}^{'}}{x}
\right)
+ Src.q_{r}^{'} + Fall.q_{r}^{'} + Turb.q_{r}^{'}$ (A.55)

$BC"$71@?eNL$H1+?eNL$O>[email protected],$N$_$NNL$G$"$k(B.

A.3 $B$^$H$a(B

$B=`05=LJ}Dx<07O$O0J2<$N$h$&$K$^$H$a$i$l$k(B. $B$?$@$7(B, $B>qMp$r<($9(B $~^{'}$ $B$O(B $B=|$$$?(B.

$B1?F0J}Dx<0(B
 
$\displaystyle \DP{u}{t}$ $\textstyle =$ $\displaystyle - \left( u \DP{u}{x} + w \DP{u}{z} \right)
- {c_{p}}_{d} \bar{\theta_{v}} \DP{\pi}{x}
+ Turb.u$ (A.56)
$\displaystyle \DP{w}{t}$ $\textstyle =$ $\displaystyle - \left(
u \DP{w}{x}
+ w \DP{w}{z}
\right)
- {c_{p}}_{d} \bar{\theta_{v}} \DP{\pi}{x}
+ Turb.w$  
    $\displaystyle + \left(
\frac{\theta}{\bar{\theta}}
+ \frac{\sum q_{v}/M_{v}}{1/...
...
- \frac{\sum q_{v} + \sum q_{c} + \sum q_{r}}
{1 + \sum \bar{q_{v}}}
\right) g$ (A.57)

$B05NOJ}Dx<0(B
 
$\displaystyle \DP{\pi}{t}=
- \frac{\overline{{C_{s}}^{2}}}{{c_{p}}_{d} \bar{\rh...
...bar{f})^{2}}
\Ddiv \left\{
\bar{\rho} (\bar{\theta}/\bar{f}) \Dvect{u}
\right\}$     (A.58)

$BG.$N<0(B
 
$\displaystyle \DP{\theta}{t}
=
- \left(
u\DP{\theta}{x}
+ w\DP{\theta}{x}
\right)
- w\DP{\bar{\theta}}{x}
+ Q + Turb.\bar{\theta} + Turb.\theta$     (A.59)

mail protected],$N:.9gHf$NJ]B8<0(B
 
    $\displaystyle \DP{q_{v}}{t}
=
- \left(
u\DP{q_{v}}{x}
+ w\DP{q_{v}}{x}
\right)
- w\DP{\bar{q_{v}}}{x}
+ Src.q_{v} + Turb.\bar{q_{v}} + Turb.q_{v},$ (A.60)
    $\displaystyle \DP{q_{c}}{t}
=
- \left(
u\DP{q_{c}}{x}
+ w\DP{q_{c}}{x}
\right)
+ Src.q_{c} + Turb.q_{c},$ (A.61)
    $\displaystyle \DP{q_{r}}{t}
= - \left(
u\DP{q_{r}}{x}
+ w\DP{q_{r}}{x}
\right)
+ Src.q_{r} + Fall.q_{r} + Turb.q_{r}$ (A.62)


next up previous
: B. $BMpN.%Q%i%a%?%j% : $B<>=aBg5$$K$*$1$k(B 2 $B : 2. $B;29MJ88%(B
Odaka Masatsugu $BJ?@.(B19$BG/(B9$B7n(B11$BF|(B