(B
$B2A$9$k>l9g$O(B, $B%U%i%C%/%93J;RE@$NCM$rJ?6Q$7$F%9%+%i!<3J;RE@$G$NCM$H$_$J$9(B.
$BI,MW$H$J$kJ?6QA`:n$r0J2<$K<($9(B. $B$3$3$G$O(B
$BJ}8~$N%U%i%C%/%93J;RE@$NJQ(B
$B?t$r(B
,
$BJ}8~$N%U%i%C%/%93J;RE@$NJQ?t$r(B
, $B%9(B
$B%+%i!<3J;RE@$NJQ?t$r(B
$B$H$7$F$$$k(B.
|
|
 |
(2.1) |
|
|
 |
(2.2) |
|
|
 |
(2.3) |
|
|
 |
(2.4) |
|
|
 |
(2.5) |
|
|
 |
(2.6) |
|
|
 |
(2.7) |
|
|
 |
(2.8) |
|
|
 |
(2.9) |
$B6u4VHyJ,$r(B 2 $B $BJ}8~$N%U%i%C%/%93J;RE@$NJQ?t$r(B
,
$BJ}8~$N%U%i%C%/%93J;RE@$NJQ?t$r(B
,
$B%9%+%i!<3J;RE@$NJQ?t$r(B
$B$H$7$F$$$k(B.
,
$BJ}8~$H$b$K%U%i%C%/%93J;RE@$NJQ?t$r(B
$B$H$7$F$$$k(B.
$B$=$l$>$l$NJQ?t$KBP$7$FHyJ,$rI>2A$9$k3J;RE@$O0l0U$K7h$^$k(B.
$B$=$N$?$a(B, $BB>$N3J;RE@$K$*$$$FHyJ,$rI>2A$9$k>l9g$K$OJ?6QA`:n$rMQ$$$k(B.
|
|
![$\displaystyle \left[\DP{\pi}{x} \right]_{i(u),k}
\equiv \frac{\pi_{i+1, k} - \pi_{i, k}}{\Delta x}$](img32.png) |
(2.10) |
|
|
![$\displaystyle \left[\DP{\pi}{z} \right]_{i,k(w)}
\equiv \frac{\pi_{i, k+1} - \pi_{i, k}}{\Delta z}$](img33.png) |
(2.11) |
|
|
![$\displaystyle \left[\DP{u}{x} \right]_{i,k}
\equiv \frac{u_{i(u), k} - u_{i-1(u), k}}{\Delta x}$](img34.png) |
(2.12) |
|
|
![$\displaystyle \left[\DP{u}{z} \right]_{i(u),k(w)}
\equiv \frac{u_{i(u), k+1} - u_{i(u), k}}{\Delta z}$](img35.png) |
(2.13) |
|
|
![$\displaystyle \left[\DP{w}{x} \right]_{i(u),k(w)}
\equiv \frac{w_{i+1, k(w)} - w_{i, k(w)}}{\Delta x}$](img36.png) |
(2.14) |
|
|
![$\displaystyle \left[\DP{w}{z} \right]_{i,k}
\equiv \frac{w_{i, k(w)} - w_{i, k-1(w)}}{\Delta z}$](img37.png) |
(2.15) |
|
|
![$\displaystyle \left[\DP{\phi}{x} \right]_{i,k(w)}
\equiv \frac{\phi_{i(u), k(w)} - \phi_{i-1(u), k(w)}}{\Delta x}$](img38.png) |
(2.16) |
|
|
![$\displaystyle \left[\DP{\phi}{z} \right]_{i(u),k}
\equiv \frac{\phi_{i(u), k(w)} - \phi_{i(u), k-1(w)}}{\Delta z}$](img39.png) |
(2.17) |
2 $Bl9g$HF1MM$K(B, $B6u4VHyJ,$r(B 4 $B
|
|
![$\displaystyle \left[\DP{\pi}{x} \right]_{i(u),k}
\equiv \frac{9}{8}\left(\frac{...
...\right) -
\frac{1}{24}\left(\frac{\pi_{i+2, k} - \pi_{i-1, k}}{\Delta x}\right)$](img40.png) |
(2.18) |
|
|
![$\displaystyle \left[\DP{\pi}{z} \right]_{i,k(w)}
\equiv \frac{9}{8}\left(\frac{...
...\right) -
\frac{1}{24}\left(\frac{\pi_{i, k+2} - \pi_{i, k-1}}{\Delta x}\right)$](img41.png) |
(2.19) |
|
|
![$\displaystyle \left[\DP{u}{x} \right]_{i,k}
\equiv \frac{9}{8}\left(\frac{u_{i(...
...ight) -
\frac{1}{24}\left(\frac{u_{i(u)+1, k} - u_{i-2(u), k}}{\Delta x}\right)$](img42.png) |
(2.20) |
|
|
![$\displaystyle \left[\DP{u}{z} \right]_{i(u),k(w)}
\equiv \frac{9}{8}\left(\frac...
...ight) -
\frac{1}{24}\left(\frac{u_{i(u), k+2} - u_{i(u), k-1}}{\Delta x}\right)$](img43.png) |
(2.21) |
|
|
![$\displaystyle \left[\DP{w}{x} \right]_{i(u),k(w)}
\equiv \frac{9}{8}\left(\frac...
...ight) -
\frac{1}{24}\left(\frac{w_{i+2, k(w)} - w_{i-1, k(w)}}{\Delta x}\right)$](img44.png) |
(2.22) |
|
|
![$\displaystyle \left[\DP{w}{z} \right]_{i,k}
\equiv \frac{9}{8}\left(\frac{w_{i,...
...ight) -
\frac{1}{24}\left(\frac{w_{i, k+1(w)} - w_{i, k-2(w)}}{\Delta z}\right)$](img45.png) |
(2.23) |
|
|
![$\displaystyle \left[\DP{\phi}{x} \right]_{i,k(w)}
\equiv \frac{9}{8}
\left(\fra...
...{1}{24}
\left(\frac{\phi_{i+1(u), k(w)} - \phi_{i-2(u), k(w)}}{\Delta x}\right)$](img46.png) |
(2.24) |
|
|
![$\displaystyle \left[\DP{\phi}{z} \right]_{i(u),k}
\equiv \frac{9}{8}\left(
\fra...
...{1}{24}\left(
\frac{\phi_{i(u), k+1(w)} - \phi_{i(u), k-2(w)}}{\Delta z}\right)$](img47.png) |
(2.25) |
![\begin{displaymath}
\left[\DP{\overline{\pi}}{z}\right]_{i,k} =
- \frac{g}{{c_{p}}_{d} [\overline{\theta_{v}}]_{i,k}}
\end{displaymath}](img48.png) |
(2.26) |
$B4pK\>l$NL)EY(B
$B$O0J2<$N$h$&$K7W;;$9$k(B.
![\begin{displaymath}
\overline{\rho}_{i,k} = \frac{p_{0}}{R_{d}}
\frac{[\overline{\pi}^{c_{v}/R_{d}}]_{i,k}}
{[\overline{\theta_{v}}]_{i,k}}
\end{displaymath}](img50.png) |
(2.27) |
![$\displaystyle \DP{\pi_{i,k}}{t}
+ \frac{\overline{c}_{i,k}^{2}}{{c_{p}}_{d}
\ov...
...{v}} u}{x} +
\DP{\overline{\rho} \overline{\theta_{v}} u}{z}
\right]_{i,k}
= 0.$](img61.png) |
|
|
(2.30) |
$B4pK\>l$N2;B.(B
$B$O0J2<$N$h$&$K7W;;$9$k(B.
![\begin{displaymath}
\overline{c}_{i,k}^{2} = \frac{{c_{p}}_{d} R_{d}}{c_{v}}
\overline{\pi}_{i,k} [\overline{\theta_{v}}]_{i,k}.
\end{displaymath}](img63.png) |
(2.31) |
$B$3$3$G$ON%;62=$7$?JQ?t$KBP$9$k6-3&>r7o$NM?$(J}$r$^$H$a$k(B. $B9MN8$9$k6-3&>r(B
$B7o$O(B, $B<~4|6-3&>r7o(B, $B6-3&$G$9$Y$j$J$7>r7o$H1~NO$J$7>r7o$G$"$k(B.
$BNc$H$7$F(B,
$BJ}8~%U%i%C%/%93J;RE@$KG[CV$5$l$?JQ?t(B
$B$r9M$($k(B.
$B7W;;NN0hFb$N(B
$BJ}8~$NE:;z$r(B
$B$H$7(B, $B8RBeItJ,$N3J;RE@?t(B
$B$r(B
$B$H$9$k(B(Fig.1.2$B;2>H(B). $B$3$N$H$-<~4|6-3&>r7o$O0J2<$N$h$&$KM?(B
$B$($i$l$k(B.
|
|
 |
(2.36) |
|
|
 |
(2.37) |
|
|
 |
(2.38) |
|
|
 |
(2.39) |
$B$?$@$7(B
$B$OG$0U$N@0?t$G$"$j(B, $B$=$NHO0O$O(B
$B$G$"$k(B.
$BJ}8~%U%i%C%/%93J;RE@$KG[CV$5$l$?JQ?t(B, $B%9%+%i!<3J;RE@$KG[CV$5$l$?JQ?t(B
$B$KBP$7$F$bF1MM$KM?$($k$3$H$,$G$-$k(B.
$B6-3&$GB.EY$r(B 0 $B$H$9$k(B. $B$3$N>l9g(B, $B6-3&$r$O$5$s$GJQ?t$NCM$,H?BP>N$K$J$k$h(B
$B$&$KM?$($k(B.
$BNc$H$7$F(B
$BJ}8~$K6-3&$rM?$($?>l9g$r9M$($k(B.
$BJ}8~%U%i%C%/%93J;RE@$K(B
$BG[CV$5$l$?JQ?t$KBP$7$F$O(B.
|
|
 |
(2.40) |
|
|
 |
(2.41) |
|
|
 |
(2.42) |
|
|
 |
(2.43) |
$B$H$9$k(B. $B6-3&>e$KG[CV$5$l$F$$$J$$JQ?t$KBP$7$F$O(B,
|
|
 |
(2.44) |
|
|
 |
(2.45) |
|
|
 |
(2.46) |
|
|
 |
(2.47) |
$B$H$9$k(B.
$B6-3&>e$GK!@~J}8~B.EY$r(B 0, $B@\@~J}8~B.EY$NK!@~J}8~HyJ,$r(B 0 $B$H$9$k(B. $B$3$N>l(B
$B9g(B, $B6-3&>e$GG[[email protected],$O6-3&$r$O$5$s$GJQ?t$NCM$,H?BP>N$K$J$k$h$&(B
$B$KM?$((B, $B6-3&>e$KG[CV$5$l$F$$$J$$JQ?t$KBP$7$F$OJI$r$O$5$s$GJQ?t$NCM$,BP>N(B
$B$K$J$k$h$&$KM?$($k(B.
$BNc$H$7$F(B
$BJ}8~$K6-3&$rM?$($?>l9g$r9M$($k(B.
$BJ}8~%U%i%C%/%93J;RE@$K(B
$BG[CV$5$l$?JQ?t$KBP$7$F$O(B.
|
|
 |
(2.48) |
|
|
 |
(2.49) |
|
|
 |
(2.50) |
|
|
 |
(2.51) |
$B$H$9$k(B. $B6-3&>e$KG[CV$5$l$F$$$J$$JQ?t$KBP$7$F$O(B,
|
|
 |
(2.52) |
|
|
 |
(2.53) |
|
|
 |
(2.54) |
|
|
 |
(2.55) |
$B$H$9$k(B.
: 3. $B;~4VJ}8~$NN%;62=(B
: 2 $B
: 1. $B?tCM7W;;$N35MW(B
SUGIYAMA Ko-ichiro
$BJ?@.(B22$BG/(B3$B7n(B5$BF|(B