next up previous
: 4. $B;29MJ88%(B : 2 $B : 2. $B6u4VJ}8~$NN%;62=(B


3. $B;~4VJ}8~$NN%;62=(B

3.1 $B1?F0J}Dx<0$H05NOJ}Dx<0(B

$B6u4VN%;62=$5$l$?1?F0J}Dx<0(B(2.28), (2.29)$B$H05NOJ}Dx<0(B (2.30)$B$r;~4VJ}8~$KN%;62=$9$k(B. $B2;GH$K4XO"$9$k9`$OC;$$%?%$%`%9%F%C%W(B $\Delta \tau$ $B$GN%;62=$7(B, $B$=$NB>(B $B$N9`$OD9$$%?%$%`%9%F%C%W(B $\Delta t$ $B$GN%;62=$9$k(B. $B2;GH$K4XO"$9$k9`$NN%(B $B;62=$K$O(B HE-VI $BK!$r:NMQ$7(B, $u$ $B$N<0$OA0?J:9J,(B, $w, \pi$ $B$N<0$O8eB`:9J,(B ($B%/%i%s%/!&%K%3%k%=%sK!(B)$B$GN%;62=$9$k(B. $B$=$NB>$N9`$NN%;62=$K$O%j!<%W%U%m%C(B $B%0K!$rMQ$$$k(B. $BN%;62=$7$?<0$N7W;;$O$^$:(B $u$ $B$N<0$+$i9T$&(B. $BF@$i$l$?(B $\tau +\Delta \tau$ $B$N(B $u$ $B$rMQ$$$F(B $\pi$ $B$r7W;;$7(B, $u, \pi$ $B$rMQ$$$F(B $w$ $B$r7W;;$9$k(B.

$B1?F0J}Dx<0$N3F9`$N$&$A(B, $B2;GH$K4X78$7$J$$9`$r(B $F_u, F_w$ $B$H$7$F(B $B$^$H$a$k$H(B, $B1?F0J}Dx<0$H05NOJ}Dx<0$O0J2<$N$h$&$K=q$1$k(B.

    $\displaystyle \DP{u_{i(u),k}}{t} = - \left[\bar{c_{p}} \bar{\theta}_{v}
\DP{(\pi - \alpha Div )}{x}\right]_{i(u),k}
+ [F_{u}]_{i(u),k}^{t},$ (3.1)
    $\displaystyle \DP{w_{i,k(w)}}{t} = - \left[\bar{c_{p}} \bar{\theta}_{v}
\DP{(\pi - \alpha Div )}{z}\right]_{i,k(w)}
+ [F_{w}]_{i,k(w)}^{t},$ (3.2)
    $\displaystyle \DP{\pi_{i,k}}{t}
+ \left[\frac{\bar{c}^{2}}{\bar{c_{p}} \bar{\rh...
... \left[\frac{\bar{c}^{2}}{\bar{c_{p}} \bar{\theta}_{v}} \DP{u}{x}\right]_{i,k}.$ (3.3)

$B$?$@$7(B $u, w$ $B$N<0$K$O2;GH8:?j9`(B $\alpha Div$ $B$r2C$($F$"$k(B (Skamarock and Klemp, 1992). $B2;GH$K4XO"$7$J$$9`(B $F_{u}, F_{w}$ $B$O(B,
    $\displaystyle [F_{u}]_{i(u),k}^{t} =
- \left[{\rm Adv}.{u}\right]_{i(u),k}^{t}
...
...ht]_{i(u),k}^{t - \Delta t}
+ \left[{\rm Diff}.u\right]_{i(u),k}^{t - \Delta t}$ (3.4)
    $\displaystyle \left[F_{w}\right]_{i,k(w)}^{t} =
- \left[{\rm Adv}.{w}\right]_{i...
..._{i,k(w)}^{t - \Delta t}.
+ \left[{\rm Diff}.w \right]_{i,k(w)}^{t - \Delta t}.$ (3.5)

$B$G$"$j(B, $B;~9o(B $t$ $B$GI>2A$9$k$3$H$K$9$k(B. $BC"$7(B, $BCf?4:9J,$G%j!<%W%U%m%C%0K!$rMQ$$$k$?$a(B, $B?tCMG4@-9`(B Diff $B$rDI2C$7$F$"$k(B.

3.1.1 $B2;GH$K4XO"$9$k9`$N;~4VJ}8~$NN%;62=(B

3.1.1.1 $B?eJ?J}8~$N1?F0J}Dx<0$NN%;62=(B

(3.1)$B$r;~4VJ}8~$KN%;62=$9$k$H0J2<$N$h$&$K$J$k(B.

$\displaystyle u^{\tau + \Delta \tau}_{i(u),k}
= u^{\tau}_{i(u), k}
- \left[
\ba...
...\alpha Div)^{\tau}}{x}
\right\}
\right]_{i(u),k}
+
F_{u,i(u),k}^{t} \Delta \tau$     (3.6)

3.1.1.2 $B1tD>J}8~$N1?F0J}Dx<0$H05NOJ}Dx<0$NN%;62=(B

HE-VI $BK!$rMQ$$$k$N$G(B, $w$ $B$H(B $\pi$ $B$N<0$rO"N)$7$F2r$/(B. $w$ $B$N<0$K$*$$(B $B$F2;GH8:?j9`$OA0?J:9J,(B, $B05NO9`$O8eB`:9J,$GN%;62=$9$k(B. $\pi$ $B$N<0$K$*(B $B$$$F?eJ?HyJ,9`$O(B(3.6)$B$G5a$a$?(B $u^{\tau +\Delta \tau}$ $B$rMQ$$$FN%;62=$7(B, $B1tD>HyJ,9`$O8eB`:9J,$GN%;62=$9$k(B.

$\displaystyle w^{\tau + \Delta \tau}
= w^{\tau}
- \bar{c_{p}} \bar{\theta}_{v} ...
...{\pi^{\tau}}{z}
- \DP{(\alpha Div)^{\tau}}{z}
\right\}
+ F_{w}^{t} \Delta \tau.$     (3.7)


$\displaystyle \pi^{\tau + \Delta \tau}
+ \beta \frac{\bar{c}^{2}\Delta \tau}{\b...
...^{2} \Delta \tau}{\bar{c_{p}} \bar{\theta}_{v}} \DP{u^{\tau + \Delta \tau}}{x}.$      

$B$3$3$G$O4JC1$N$?$a3J;RE@0LCV$rI=$9E:;z$O>JN,$7$?(B. (3.8) $B<0$K(B (3.7) $B$rBeF~$7$F(B $w^{\tau +
\Delta \tau}$ $B$r>C5n$9$k(B.
$\displaystyle \pi^{\tau + \Delta \tau}$ $\textstyle -$ $\displaystyle \beta^{2}
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\bar{c_{p}} \bar{\r...
...\theta}_{v}^{2}\right)
\left(
\DP{\pi^{\tau + \Delta \tau}}{z}
\right)
\right\}$  
  $\textstyle =$ $\displaystyle \pi^{\tau}
-(1 - \beta)
\frac{\bar{c}^{2}\Delta \tau}{\bar{c_{p}}...
...}^{2} \Delta \tau}{\bar{c_{p}} \bar{\theta}_{v}}
\DP{u^{\tau + \Delta \tau}}{x}$  
    $\displaystyle - \beta \frac{\bar{c}^{2}\Delta \tau}{\bar{c_{p}} \bar{\rho} \bar...
... \DP{(\alpha Div)^{\tau}}{z}
\right\}
+ F_{w}^{t} \Delta \tau
\right\}
\right].$  

(3.9) $B<01&JU$r6u4VJ}8~$KN%;62=$7(B, $B3J;RE@0LCV$rI=$9E:;z$rIU$1$FI=$9$H0J2<$N$h$&$K$J$k(B ($B7W;;$N>\:Y$O(B $BBh(BA$B>O(B $B;2>H(B).
    $\displaystyle \left\{
- \beta^{2}
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\b...
...} \bar{\theta}_{v}^{2}
\right)_{k(w)}
\right\}
\pi^{\tau + \Delta \tau}_{i,k+1}$  
    $\displaystyle \hspace{10mm}+ \left[
1 + \beta^{2}
\left(
\frac{\bar{c}^{2}{\Del...
...theta}_{v}^{2}
\right)_{k-1(w)}
\right\}
\right]
\pi^{\tau + \Delta \tau}_{i,k}$  
    $\displaystyle \hspace{10mm}+ \left\{
- \beta^{2}
\left(
\frac{\bar{c}^{2}{\Delt...
...\bar{\theta}_{v}^{2}
\right)_{k-1(w)}
\right\}
\pi^{\tau + \Delta \tau}_{i,k-1}$  
    $\displaystyle =
\pi^{\tau}_{i,k}
- (1 - \beta)
\left(
\frac{\bar{c}^{2}\Delta \...
...ar{\theta}_{v}}
\right)_{k}
\left(
\DP{u^{\tau + \Delta \tau}}{x}
\right)_{i,k}$  
    $\displaystyle \hspace{2mm} - \beta
\left(
\frac{\bar{c}^{2}\Delta \tau}{\bar{c_...
...ho} \bar{\theta}_{v} \right)_{i,k(w)}
\left\{
w^{\tau}_{i,k(w)}
\right. \right.$  
    $\displaystyle \hspace{10mm}
\left. \left.
- \left( \bar{c_{p}} \bar{\theta}_{v}...
...i,k(w)}
+ \left( F_{w}^{t} \right)_{i,k(w)} \Delta \tau
\right\}
\right]_{i,k}.$  

$BC"$7J?6Q>l$NNL$O1tD>J}8~$K$7$+0MB8$7$J$$$N$G(B $z$ $BJ}8~$NE:;z$N$_(B $BIU$1$F$"$k(B.

3.1.1.3 $B6-3&>r7o(B

$B>e2<6-3&$r8GDjJI$H$9$k>l9g(B, $B6-3&>r7o$O>eIt2

    $\displaystyle w(i,0(w)) = 0,$ (3.8)
    $\displaystyle w(i,km(w)) = 0$ (3.9)

$B$G$"$k(B.

$B2:

$B2)$B$K$D$$$F9M$($k(B. $B$3$N;~(B (3.7) $B<0$K(B $BE:;z$rIU$1$F=q$-2<$9$H(B,

$\displaystyle \beta \left(
\DP{\pi^{\tau + \Delta \tau}}{z}
\right)_{i,0(w)}$ $\textstyle =$ $\displaystyle \left( \DP{(\alpha Div)^{\tau}}{z} \right)_{i,0(w)}
- (1 - \beta)...
..._{i,0(w)}
+ \left(\Dinv{\bar{c_{p}} \bar{\theta}_{v}} F_{w}^{t}\right)_{i,0(w)}$  
  $\textstyle \equiv$ $\displaystyle E_{i,0(w)}$ (3.10)

$B$H$J$k(B. $B$7$?$,$C$F(B (3.10) $B<0$O0J2<$N$h$&$K$J$k(B.
    $\displaystyle \left\{
- \beta^{2}
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\b...
...ho} \bar{\theta}_{v}^{2}
\right)_{1(w)}
\right\} \pi^{\tau + \Delta \tau}_{i,1}$  
  $\textstyle =$ $\displaystyle \pi^{\tau}_{i,1}
-(1 - \beta)
\left(
\frac{\bar{c}^{2}\Delta \tau...
...ar{\theta}_{v}}
\right)_{1}
\left(
\DP{u^{\tau + \Delta \tau}}{x}
\right)_{i,1}$  
    $\displaystyle - \beta
\left(
\frac{\bar{c}^{2}\Delta \tau}{\bar{c_{p}} \bar{\rh...
...(\alpha Div)^{\tau}}{z}
\right\}
+ F_{w}^{t} \Delta \tau
\right\}
\right]_{i,1}$  
    $\displaystyle - \beta
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\bar{c_{p}} \b...
...\left(
\bar{c_{p}} \bar{\rho} \bar{\theta}_{v}^{2}
\right)_{i,0(w)}
E_{i,0(w)}.$ (3.11)

$B>eIt6-3&(B:

$B>eIt6-3&(B($k(w) = km(w)$)$B$K$D$$$F9M$($k(B. $B$3$N;~(B (3.7) $B<0(B $B$rE:;z$rIU$1$F=q$-2<$9$H(B,

$\displaystyle \beta \left(
\DP{\pi^{\tau + \Delta \tau}}{z}
\right)_{i,km(w)}$ $\textstyle =$ $\displaystyle \left( \DP{(\alpha Div)^{\tau}}{z} \right)_{i,km(w)}
- (1 - \beta...
...i,km(w)}
+ \left(\Dinv{\bar{c_{p}} \bar{\theta}_{v}} F_{w}^{t}\right)_{i,km(w)}$  
  $\textstyle \equiv$ $\displaystyle E_{i,km(w)}$ (3.12)

$B$H$J$k(B. $B$7$?$,$C$F(B (3.10) $B<0$O0J2<$N$h$&$K$J$k(B.
    $\displaystyle \left\{
1 +
\beta^{2}
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{...
...\bar{\theta}_{v}^{2}
\right)_{km-1(w)}
\right\}
\pi^{\tau + \Delta \tau}_{i,km}$  
    $\displaystyle + \left\{
- \beta^{2}
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{...
...ar{\theta}_{v}^{2}
\right)_{km-1(w)}
\right\}
\pi^{\tau + \Delta \tau}_{i,km-1}$  
  $\textstyle =$ $\displaystyle \pi^{\tau}_{i,km}
-(1 - \beta)
\left(
\frac{\bar{c}^{2}\Delta \ta...
...{\theta}_{v}}
\right)_{km}
\left(
\DP{u^{\tau + \Delta \tau}}{x}
\right)_{i,km}$  
    $\displaystyle - \beta
\left(
\frac{\bar{c}^{2}\Delta \tau}{\bar{c_{p}} \bar{\rh...
...\alpha Div)^{\tau}}{z}
\right\}
+ F_{w}^{t} \Delta \tau
\right\}
\right]_{i,km}$  
    $\displaystyle + \frac{\beta}{\Delta z}
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2...
...\left(
\bar{c_{p}} \bar{\rho} \bar{\theta}_{v}^{2}
\right)_{km(w)}
E_{i,km(w)}.$ (3.13)

3.1.1.4 $B05NOJ}Dx<0$N;~4V@QJ,J}K!(B

(3.10), (3.14), (3.16) $B<0$rO"N)$9$k$H(B, $B0J2<$N$h$&$J9TNs<0$N7A<0$G=q$/(B $B$3$H$,$G$-$k(B.

$\displaystyle \left(\begin{array}{cccc}
A_{1} & B_{2} & & 0 \\
C_{1} & \ddots ...
...m} & \cdots & \cdots & \pi_{im, km} \\
\end{array}\right)^{\tau + \Delta \tau}$      
$\displaystyle =
\left(\begin{array}{cccc}
D_{1,1} & D_{2,1} & \cdots & D_{im,1}...
...dots \\
D_{1,km} & \cdots & \cdots & D_{im,km} \\
\end{array}\right)^{\tau}
.$     (3.14)

$B$3$NO"N)J}Dx<0$r2r$/$3$H$G(B $\pi_{i, k}$ $B$r5a$a$k(B. $B$3$NO"N)J}Dx<0$N78?t$O0J2<$N(B $B$h$&$K=q$1$k(B.
$\displaystyle A_{k}$ $\textstyle =$ $\displaystyle 1 + \beta^{2}
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\bar{c_{...
...
+
\left(
\bar{c_{p}} \bar{\rho} \bar{\theta}_{v}^{2}
\right)_{k-1(w)}
\right\}$  
    $\displaystyle (k = 2, 3, \cdots km-1),$  
$\displaystyle A_{1}$ $\textstyle =$ $\displaystyle 1 + \beta^{2}
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\bar{c_{...
...Delta z^{2}}
\left(
\bar{c_{p}} \bar{\rho} \bar{\theta}_{v}^{2}
\right)_{1(w)},$  
$\displaystyle A_{km}$ $\textstyle =$ $\displaystyle 1 + \beta^{2}
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\bar{c_{...
...ta z^{2}}
\left(
\bar{c_{p}} \bar{\rho} \bar{\theta}_{v}^{2}
\right)_{km-1(w)},$  
$\displaystyle B_{k}$ $\textstyle =$ $\displaystyle - \beta^{2}
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\bar{c_{p}...
...lta z^{2}}
\left(
\bar{c_{p}} \bar{\rho} \bar{\theta}_{v}^{2}
\right)_{k-1(w)},$  
    $\displaystyle (k = 2, 3, \cdots km),$  
$\displaystyle C_{k}$ $\textstyle =$ $\displaystyle - \beta^{2}
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\bar{c_{p}...
...Delta z^{2}}
\left(
\bar{c_{p}} \bar{\rho} \bar{\theta}_{v}^{2}
\right)_{k(w)},$  
    $\displaystyle (k = 1, 2, \cdots km-1),$  
$\displaystyle D_{i,k}$ $\textstyle =$ $\displaystyle \pi^{\tau}_{i,k}
-(1 - \beta)
\left(
\frac{\bar{c}^{2}\Delta \tau...
..._{v}}
\right)_{k}
\left(
\DP{u^{\tau + \Delta \tau}}{x}
\right)_{i,k}
+ F_{i,k}$  
    $\displaystyle (k = 2, 3, \cdots km-1),$  
$\displaystyle D_{i,1}$ $\textstyle =$ $\displaystyle \pi^{\tau}_{i,1}
-(1 - \beta)
\left(
\frac{\bar{c}^{2}\Delta \tau...
..._{v}}
\right)_{1}
\left(
\DP{u^{\tau + \Delta \tau}}{x}
\right)_{i,1}
+ F_{i,1}$  
    $\displaystyle - \beta
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\bar{c_{p}} \b...
...\left(
\bar{c_{p}} \bar{\rho} \bar{\theta}_{v}^{2}
\right)_{i,0(w)}
E_{i,0(w)},$  
$\displaystyle D_{i,km}$ $\textstyle =$ $\displaystyle \pi^{\tau}_{i,km}
-(1 - \beta)
\left(
\frac{\bar{c}^{2}\Delta \ta...
...}}
\right)_{km}
\left(
\DP{u^{\tau + \Delta \tau}}{x}
\right)_{i,km}
+ F_{i,km}$  
    $\displaystyle + \beta
\left(
\frac{\bar{c}^{2}{\Delta \tau}^{2}}{\bar{c_{p}} \b...
...\left(
\bar{c_{p}} \bar{\rho} \bar{\theta}_{v}^{2}
\right)_{km(w)}
E_{i,km(w)}.$  

$B$?$@$7(B,
$\displaystyle E_{i,k(w)} \equiv
\left( \DP{(\alpha Div)^{\tau}}{z} \right)_{i,k...
..._{i,k(w)}
+ \left(\Dinv{\bar{c_{p}} \bar{\theta}_{v}} F_{w}^{t}\right)_{i,k(w)}$      


$\displaystyle F_{i,k}$ $\textstyle \equiv$ $\displaystyle \hspace{2mm} - \beta
\left(
\frac{\bar{c}^{2}\Delta \tau}{\bar{c_...
...ho} \bar{\theta}_{v} \right)_{i,k(w)}
\left\{
w^{\tau}_{i,k(w)}
\right. \right.$  
    $\displaystyle \hspace{10mm}
\left. \left.
- \left( \bar{c_{p}} \bar{\theta}_{v}...
...i,k(w)}
+ \left( F_{w}^{t} \right)_{i,k(w)} \Delta \tau
\right\}
\right]_{i,k}.$  

$B$G$"$k(B.

3.1.2 $B2;GH$K4XO"$7$J$$9`$N;~4VJ}8~$NN%;62=(B

$B1?F0J}Dx<0$N2;GH$K4XO"$7$J$$9`(B (3.1), (3.2) $B<0$r(B $BN%;62=$9$k(B.

    $\displaystyle F_{u,i(u),k}^{t} =
- \left[ {\rm Adv}.u \right]_{i(u),k}^{t}
+ \l...
...ight]_{i(u),k}^{t-\Delta t}
+ \left[{\rm Diff}.u \right]_{i(u),k}^{t-\Delta t},$ (3.15)
    $\displaystyle F_{w,i,k(w)} =
- \left[ {\rm Adv}.w \right]_{i(u),k}^{t}
+ \left[...
..._{i,k(w)}^{t - \Delta t}
+ \left[ {\rm Diff}.w \right]_{i,k(w)}^{t - \Delta t}.$ (3.16)

$B$3$3$G(B, Adv $B$O0\N.9`(B, D $B$OG4@-3H;69`(B, Buoy $B$OIbNO9`(B, Diff $B$O?tCMG4@-9`$G$"$k(B. $B$=$l$>$l$N9`$r=q$-2<$9$H(B,
$\displaystyle \left[ {\rm Adv}.{u} \right]_{i(u),k}^{t}$ $\textstyle =$ $\displaystyle u_{i(u),k}^{t} \left[\DP{u}{x}\right]_{i(u),k}^{t}
+ w_{i(u),k}^{t} \left[\DP{u}{z}\right]_{i(u),k}^{t}$ (3.17)
$\displaystyle \left[ {\rm Adv}.{w} \right]_{i,k(w)}^{t}$ $\textstyle =$ $\displaystyle u_{i,k(w)}\left[\DP{w}{x}\right]_{i,k(w)}^{t}
+ w_{i,k(w)}\left[\DP{w}{z}\right]_{i,k(w)}^{t}$ (3.18)

$B$G$"$j(B, $BIbNO9`$O(B,
$\displaystyle [{\rm Buoy}]^{t}_{i,k(w)}$ $\textstyle =$ $\displaystyle g \frac{\theta_{i,k(w)}^{t}}{\overline{\theta}_{i,k(w)}}$  
    $\displaystyle + g \frac{\sum [q_{v}]_{i,k(w)}^{t}/M_{v}}{1/M_{d}
+ \sum [\bar{q_{v}}]_{i,k(w)}/M_{v}}$  
    $\displaystyle - g \frac{\sum [q_{v}]_{i,k(w)}^{t}
+ \sum [q_{c}]_{i,k(w)}^{t} + \sum [q_{r}]_{i,k(w)}^{t}}
{1 + \sum [\bar{q_{v}}]_{i,k(w)}}$ (3.19)

$B$G$"$j(B, $BG4@-3H;69`$O(B,
$\displaystyle \left[ {\rm Turb}.{u} \right]_{i(u),k}^{t - \Delta t}$ $\textstyle =$ $\displaystyle 2 \left[
\DP{}{x}\left\{
\left( K_{m} \right)_{i,k} \left( \DP{u}{x} \right)_{i,k}
\right\}
\right]_{i(u),k}^{t - \Delta t}$  
    $\displaystyle +\left[ \DP{}{z}\left\{
\left( K_{m} \right)_{i(u),k(w)}
\left( \...
...}
\left( \DP{u}{z} \right)_{i(u),k(w)}
\right\} \right]_{i(u),k}^{t - \Delta t}$  
    $\displaystyle - \frac{2}{3 C_{m}^{2} l^{2}}
\left( \DP{ K_{m}^{2} }{x} \right)_{i(u),k}^{t - \Delta t}$ (3.20)
$\displaystyle \left[ {\rm Turb}.{w} \right]_{i,k(w)}^{t - \Delta t}$ $\textstyle =$ $\displaystyle 2 \left[
\DP{}{z}\left\{
\left( K_{m} \right)_{i,k} \left( \DP{w}{z} \right)_{i,k}
\right\}
\right]_{i,k(w)}^{t - \Delta t}$  
    $\displaystyle +\left[ \DP{}{x}\left\{
\left( K_{m} \right)_{i(u),k(w)}
\left( \...
...}
\left( \DP{u}{z} \right)_{i(u),k(w)}
\right\} \right]_{i,k(w)}^{t - \Delta t}$  
    $\displaystyle - \frac{2}{3 C_{m}^{2} l^{2}}
\left( \DP{ K_{m}^{2} }{z} \right)_{i,k(w)}^{t - \Delta t}$ (3.21)

$B$G$"$k(B. $B?tCMG4@-9`$O(B,
$\displaystyle \left[ {\rm Diff}.u \right]_{i(u),k}^{t - \Delta t}$ $\textstyle =$ $\displaystyle \nu_{h} \left\{ \DP{}{x} \left(\DP{u}{x}\right)_{i,k} \right\}_{i...
...\{ \DP{}{z} \left(\DP{u}{z}\right)_{i(u),k(w)} \right\}_{i(u),k}^{t - \Delta t}$ (3.22)
$\displaystyle \left[ {\rm Diff}.w \right]_{i,k(w)}^{t - \Delta t}$ $\textstyle =$ $\displaystyle \nu_{h} \left\{ \DP{}{x} \left(\DP{w}{x}\right)_{i(u),k(w)} \righ...
... \left\{ \DP{}{z} \left(\DP{w}{z}\right)_{i,k} \right\}_{i,k(w)}^{t - \Delta t}$ (3.23)

$B$G$"$k(B. $K_{m}$ $B$OMpN.%(%M%k%.!<$N;~4VH/E8J}Dx<0$+$i7W;;$7(B($B>\:Y$O8e=R(B), $\nu_{h}, \nu_{v}$ $B$O0J2<$N$h$&$KDj$a$k(B.
$\displaystyle \nu_{h} = \frac{\alpha_{h} \Delta x^{2}}{\Delta t}$     (3.24)
$\displaystyle \nu_{v} = \frac{\alpha_{v} \Delta z^{2}}{\Delta t}$     (3.25)

$B$3$3$G(B $\Delta x, \Delta z$ $B$O?eJ?!&1tD>J}8~$N3J;R4V3V$r0UL#$7(B, $\alpha_{h}, \alpha_{v}$ $B$O$=$l$>$l(B,
$\displaystyle \alpha_{h} \le \Dinv{8}, \hspace{3em}
\alpha_{v} \le \Dinv{8}$     (3.26)

$B$H$9$k(B.

3.2 $BG.NO3X$N<0$H:.9gHf$NJ]B8<0$NN%;62=(B

$BG.$N<0$H:.9gHf$NJ]B8<0$N1&JU$r$^$H$a$F(B $F$ $B$GI=$7(B, $B;~4VJ}8~$K%j!<%W%U%m%C%0K!$rMQ$$$FN%;62=$9$k(B.

$\displaystyle \theta_{i,k}^{t + \Delta t}$ $\textstyle =$ $\displaystyle \theta_{i,k}^{t - \Delta t} + 2 \Delta t [F_{\theta}]_{i,k}^{t}$ (3.27)
$\displaystyle \left[ q_{v} \right]_{i,k}^{t+\Delta t}$ $\textstyle =$ $\displaystyle \left[ q_{v} \right]_{i,k}^{t-\Delta t}
+ 2 \Delta t [F_{q_{v}}]_{i,k}^{t}$ (3.28)
$\displaystyle \left[ q_{c} \right]_{i,k}^{t+\Delta t}$ $\textstyle =$ $\displaystyle \left[ q_{c} \right]_{i,k}^{t-\Delta t}
+ 2 \Delta t [F_{q_{c}}]_{i,k}^{t}$ (3.29)
$\displaystyle \left[ q_{r} \right]_{i,k}^{t+\Delta t}$ $\textstyle =$ $\displaystyle \left[ q_{r} \right]_{i,k}^{t-\Delta t}
+ 2 \Delta t [F_{q_{r}}]_{i,k}^{t}$ (3.30)

$B$3$3$G(B,
$\displaystyle [F_{\theta}]_{i,k}$ $\textstyle =$ $\displaystyle - \left[{\rm Adv}.{\theta}\right]_{i,k}^{t}
- \left[{\rm Adv}.{\b...
...]_{i,k}^{t - \Delta t}
+ \left[{\rm Diff}.{\theta} \right]_{i,k}^{t - \Delta t}$  
    $\displaystyle + [Q_{cnd}]_{i,k}^{t}
+ [Q_{rad}]_{i,k}^{t-\Delta t}
+ [Q_{dis}]_{i,k}^{t-\Delta t}$ (3.31)
$\displaystyle \left[F_{q_{v}}\right]_{i,k}^{t}$ $\textstyle =$ $\displaystyle - \left[ {\rm Adv}.q_{v} \right]_{i,k}^{t}
- \left[ {\rm Adv}.\ba...
...,k}^{t - \Delta t}
+ \left[ {\rm Turb}.\bar{q_{v}} \right]_{i,k}^{t - \Delta t}$  
    $\displaystyle + \left[ {\rm Diff}.q_{v} \right]_{i,k}^{t - \Delta t}
+ \left[ EV_{rv} \right]_{i,k}^{t}$ (3.32)
$\displaystyle \left[F_{q_{c}}\right]_{i,k}^{t}$ $\textstyle =$ $\displaystyle - \left[ {\rm Adv}.q_{c} \right]_{i,k}^{t}
+ \left[ {\rm Turb}.q_{c} \right]^{t-\Delta t}
+ \left[ {\rm Diff}.q_{c} \right]^{t-\Delta t}$  
    $\displaystyle - \left[ CN_{cr} + CL_{cr} \right]_{i,k}^{t}$ (3.33)
$\displaystyle \left[F_{q_{r}}\right]_{i,k}^{t}$ $\textstyle =$ $\displaystyle - \left[ {\rm Adv}.q_{r} \right]_{i,k}^{t}
+ \left[ {\rm Turb}.q_{r} \right]_{i,k}^{t-\Delta t}
+ \left[ {\rm Diff}.q_{c} \right]^{t-\Delta t}$  
    $\displaystyle + \left[CN_{cr} + CL_{cr} - EV_{rv} \right]_{i,k}^{t}
+ \left[ PR_{r} \right]_{i,k}^{t}$ (3.34)

$B$G$"$k(B. $B0\N.$rCf?4:9J,$G0BDj$7$F2r$/$?$a$K(B, $B?tCMG4@-9`(B Diff $B$rDI2C$7$F$"(B $B$k(B. $B$^$?(B, $CN_{vc}, EV_{cv}$ $B9`$O<>=aK0OBD4@aK!$h$j7h$a$k$?$a(B, $B$=$l$i$N9`$r4^$a$J$$(B.

$\theta$, $q_{v}$, $q_{c}$, $q_{r}$ $B$r$^$H$a$F(B $\phi$ $B$GI=$7(B, $B$=$l$>$l$N9`$r=q$-2<$9(B. $B0\N.9`$O(B,

$\displaystyle \left[{\rm Adv}.{\phi}\right]_{i,k}^{t}$ $\textstyle =$ $\displaystyle \left[
u_{i(u),k} \left[ \DP{\phi}{x} \right]_{i(u),k}
\right]_{i,k}^{t}
+
\left[
w_{i,k(w)} \left[ \DP{\phi}{z} \right]_{i,k(w)}
\right]_{i,k}^{t}$ (3.35)

$B$G$"$j(B, $B4pK\>l$N0\N.9`$O(B,
$\displaystyle \left[{\rm Adv}.{\bar{\phi}}\right]_{i,k}^{t} =
\left[
w_{i,k(w)} \left[ \DP{\overline{\phi}}{z} \right]_{i,k(w)}
\right]_{i,k}^{t}$     (3.36)

$B$G$"$k(B. $BG4@-3H;69`$O(B CReSS $B$HF1MM$K(B 1.5 $B
$\displaystyle \left[{\rm Turb}.{\phi} \right]_{i,k}^{t - \Delta t}$ $\textstyle =$ $\displaystyle \left[ \DP{}{x}
\left\{
\left( K_{h} \right)_{i(u),k}
\left( \DP{\phi}{x} \right)_{i(u),k}
\right\}
\right]_{i,k}^{t - \Delta t}$  
    $\displaystyle + \left[ \DP{}{z}\left\{
\left( K_{h} \right)_{i,k(w)}
\left( \DP{\phi }{z} \right)_{i,k(w)}
\right\} \right]_{i,k}^{t - \Delta t}$ (3.37)

$B$H$J$j(B, $B4pK\>l$NG4@-3H;69`$O(B,
$\displaystyle \left[{\rm Turb}.{\bar{\phi}} \right]_{i,k}^{t - \Delta t}$ $\textstyle =$ $\displaystyle \left[ \DP{}{z}\left\{
\left( K_{h} \right)_{i,k(w)}
\left( \DP{\overline{\phi}}{z} \right)_{i,k(w)}
\right\} \right]_{i,k}^{t - \Delta t}$ (3.38)

$B$H$J$k(B. $B?tCMG4@-9`$O(B,
$\displaystyle \left[ {\rm Diff}_{\phi} \right]_{i,k}^{t - \Delta t}$ $\textstyle =$ $\displaystyle \nu_{h} \left\{ \DP{}{x} \left(\DP{\phi}{x}\right)_{i(u),k} \righ...
...eft\{ \DP{}{z} \left(\DP{\phi}{z}\right)_{i,k(w)} \right\}_{i,k}^{t - \Delta t}$ (3.39)

$B$G$"$k(B. $K_{h}$ $B$OMpN.%(%M%k%.!<$N;~4VH/E8J}Dx<0$+$i7W;;$9$k(B($B>\:Y$O8e=R(B). $\nu_{h}, \nu_{v}$ $B$O(B (3.29) $B<0$rMxMQ$9$k(B.

$B6E=L2CG.9`(B $Q_{cnd}$ $B$O(B

\begin{displaymath}[Q_{cnd}]_{i,k}^{t}
= - \left[ \frac{L}{{c_{p} \bar{\pi}}_{...
...{i,k}^{t})
(\bar{\rho}_{i,k} [q_{r}]_{i,k})^{0.65}
\right\}
\end{displaymath} (3.40)

$B$G$"$k(B.

$B;60o2CG.9`(B $Q_{dis}$ $B$O(B

\begin{displaymath}[Q_{dis}]_{i,k}^{t-\Delta t}
= \frac{1}{{c_{p}}_{d} \bar{\p...
...{\pi}}
\frac{(K_{m,i,k}^{t-\Delta t})^{3}}{{C_{m}}^{2} l^{4}}
\end{displaymath} (3.41)

$B$HM?$($k(B. $B$3$3$G(B $l=(\Delta x\Delta z)^{1/2}$ $B$G$"$k(B.

$BJ| $[Q_{rad}]_{i,k}$ $B$O7W;;@_Dj$4$H$KM?$($k(B.

$B1@?e$+$i1+?e$X$NJQ49$rI=$9(B $CN_{cr}$, $CL_{cr}$ $B$O0J2<$N$h$&$K$J$k(B.

    $\displaystyle [CN_{cr}]_{i,k}^{t} = (q_{c,i,k}^{t} - q_{c0})/\tau _{ac}$ (3.42)
    $\displaystyle \left[ CL_{cr} \right]_{i,k}^{t}
= 2.2 [q_{c}]_{i,k}^{t}
\left(
[\bar{\rho}]_{i,k}
\left[ q_{r} \right]_{i,k}^{t}
\right)^{0.875}$ (3.43)

$B1+?e$N>xH/$rI=$9(B $EV_{rv}$ $B$O0J2<$N$h$&$K$J$k(B.
    $\displaystyle \left[ EV_{rv} \right]_{i,k}^{t} =
4.85 \times 10^{-2} ([q_{vsw}]_{i,k}^{t} - [q_{v}]_{i,k}^{t})
([\bar{\rho}]_{i,k} [q_{r}]_{i,k}^{t})^{0.65}$ (3.44)

$B9_?e$K$h$k1+?e%U%i%C%/%9$rI=$9(B $PR_{r}$ $B$O0J2<$N$h$&$K=q$1$k(B.
    $\displaystyle \left[
PR_{r}
\right]_{i,k}^{t}
= \Dinv{[\bar{\rho}]_{i,k}} \DP{}{z}([\bar{\rho}]_{i,k}
[U_{r}]_{i,k}^{t}
[q_{r}]_{i,k}^{t}).$ (3.45)
    $\displaystyle [U_{r}]_{i,k}^{t} = 12.2 ([q_{r}]_{i,k}^{t})^{0.125}$ (3.46)

3.2.1 $B<>=aK0OBD4@aK!(B

Klemp and Wilhelmson (1983), CReSS $B%f!<%6!<%^%K%e%"%k(B($BDZLZ$H:g86(B, 2001) $B$G$O(B, $B?e>x5$$H1@?e$N4V$NJQ49$rI=$9(B $-CN_{vc} + EV_{cv}$ $B$O(B, Soong and Ogura (1973) $B$K$*$$$F3+H/$5$l$?(B $B<>=aK0OBD4@aK!$rMQ$$$k(B. $B$3$NJ}K!$O(B $dS=0$ $B$NCGG.@~$H(B, $\mu_{vapar} = \mu_{condensed phase}$ $B$N(B $BJ?9U>r7o(B($\mu$ $B$O2=3X%]%F%s%7%c%k(B)$B$N8r$o$k29EY!&05NO!&AH@.$r(B $BH?I|E*$K5a$a$k?tCM2rK!$G$"$k(B. $B0J2<$G$O$=$N$d$jJ}$r2r@b$9$k(B.

3.2.1.1 $BK0OB>x5$05$rMQ$$$k>l9g(B

$B<>=aK0OBD4@aK!$rMQ$$$k>l9g(B, $B$^$:;O$a$K(B (3.30) - (3.37) $B<0$+$i5a$^$kNL$K(B $*$ $B$rE:IU$7(B, $[\theta]^{*}$, $[q_{v}]^{*}$, $[q_{c}]^{*}$, $[q_{r}]^{*}$ $B$H$9$k(B. $B?e$KBP$9$k2aK0OB:.9gHf(B

$\displaystyle \Delta q_{c} = MAX\{0, [q_{v}]^{*} - q_{vsw}([\theta]^{*})\}$     (3.47)

$B$,(B $\Delta q_{c} > 0$, $B$b$7$/$O1@N3:.9gHf$,(B $q_{c}^{*} > 0$ $B$J$i(B $B$P(B, $B, $q_{v}$, $q_{c}$ $B$r5a$a$k(B.
$\displaystyle \left[ \theta \right]^{t + \Delta t}$ $\textstyle =$ $\displaystyle \theta^{*} +
\frac
{ \gamma ( [q_{v}]^{*} - q_{vsw}([\theta]^{*})) }
{ 1 + \gamma \DP{q_{vsw}([\theta]^{*})}{\theta} }$ (3.48)
$\displaystyle \left[ q_{v} \right]^{t + \Delta t}$ $\textstyle =$ $\displaystyle [q_{v}]^{*} + \frac{[\theta]^{*} - [\theta]^{t + \Delta t}}{\gamma},$ (3.49)
$\displaystyle \left[ q_{c} \right]^{t + \Delta t}$ $\textstyle =$ $\displaystyle [q_{v}]^{*} + [q_{c}]^{*} - [q_{v}]^{t + \Delta t} .$ (3.50)

$B$?$@$7(B, $\gamma = L_{v}/(c_{p} \Pi)$ $B$G$"$k(B. $B$b$7$b(B $[q_c]^{t + \Delta t} > 0$ $B$J$i$P(B, $B;CDjE*$KF@$i$l$?CM$r(B $*$ $BIU$-(B $B$N$b$N$KCV$-49$((B, (3.51) - (3.53) $B<0(B $B$NCM$,<}B+$9$k$^$G7+$jJV$7E,MQ$9$k(B. $BIaDL(B, $B9b!9?t2s7+$jJV$;$P<}B+$7(B, $BD4@08e$NCM$,F@$i$l$k$=$&$G$"$k(B.

$B$b$7$b(B $q_{c}^{t + \Delta t} < 0$ $B$N>l9g$K$O(B,

    $\displaystyle \left[ \theta \right]^{t + \Delta t} =
[\theta]^{*} - \gamma [q_{c}]^{*},$ (3.51)
    $\displaystyle \left[ q_{v} \right]^{t + \Delta t},
= [q_{v}]^{*} + [q_{c}]^{*}$ (3.52)
    $\displaystyle \left[ q_{c} \right]^{t + \Delta t}
= 0$ (3.53)

$B$H$7(B, $B7+$jJV$7$rCf;_$9$k(B.

3.2.1.2 $B05J?9UDj?t$rMQ$$$k>l9g(B

$BN22=%"%s%b%K%&%`$N@[email protected]?1~(B

$\displaystyle {\rm NH_{3}} + {\rm H_{2}S} \rightarrow {\rm NH_{4}SH}$     (3.54)

$B$N$h$&$J(B, 2 $Bl9g$N(B, $B<>=aK0OBD4@aK!$r9M$($k(B.

$BN22=%"%s%b%K%&%`$N@[email protected]?1~$N05J?9UDj?t$O(B,

$\displaystyle K_{p}
\equiv \ln(p_{\rm NH_{3}} \cdot p_{\rm H_{2}S})
= 61.781 - \frac{10834}{T} - \ln{10^{2}}$     (3.55)

$B$G$"$k(B. $B05J?9UDj?t$rMQ$$$k$3$H$G(B, $BG$0U$N29EY$KBP$9$k(B $B%"%s%b%K%"$HN22=?eAG$N%b%kHf$N@Q$r5a$a$k$3$H$,$G$-$k(B.

$BG$0U$N29EY(B $T$ $B$K$*$1$k(B NH$_{4}$SH $B$N@[email protected]$r(B $X$ $B$H$9$k$H(B, $B05J?9UDj?t$N<0$O0J2<$N$h$&$K=q$1$k(B.

    $\displaystyle (p_{\rm NH_{3}} - X) ( p_{\rm H_{2}S} - X )
= e^{k_{p}}$  
    $\displaystyle X^{2} - (p_{\rm NH_{3}} + p_{\rm H_{2}S}) X
+ p_{\rm NH_{3}} \cdot p_{\rm H_{2}S}
- e^{k_{p}} = 0$ (3.56)

$B2r$N8x<0$r;H$&$H(B, $B@[email protected](B X $B$O0J2<$H$J$k(B.
    $\displaystyle X = \Dinv{2}
\left\{
(p_{\rm NH_{3}} + p_{\rm H_{2}S})
\pm \sqrt{...
...m H_{2}S})^{2}
- 4 (p_{\rm NH_{3}} \cdot p_{\rm H_{2}S} - e^{K_{p}}) }
\right\}$  
    $\displaystyle X = \Dinv{2}
\left\{
(p_{\rm NH_{3}} + p_{\rm H_{2}S})
\pm \sqrt{ (p_{\rm NH_{3}} - p_{\rm H_{2}S})^{2}
+ 4 e^{K_{p}} }
\right\}$ (3.57)

$B:,9f$NId9f$O(B $\exp{(K_{p})} \approx 0$ $B$N>l9g$K$H$j$&$k(B $X$ $B$NCM$r(B $B2>Dj$9$k$3$H$G7h$a$k(B. $\exp{(K_{p})} \approx 0$ $B$N>l9g(B, $BL@$i$+$K(B
$\displaystyle X = {\rm min}(P_{\rm NH_3}, P_{\rm H_{2}S} )$     (3.58)

$B$G$"$k(B. $B$3$3$GLZ@1Bg5$$rA[Dj$7(B, $P_{\rm NH_3} > P_{\rm H_{2}S}$ $B$G$"$k$3$H$r2>Dj$9$k$H(B $X = P_{\rm H_{2}S}$ $B$G$"$k(B. $B$=$3$G(B (3.60)$B$N:,9f$NId9f$O(B $\exp{(K_{p})} \approx 0$ $B$N$H$-(B $X = P_{\rm H_{2}S}$ $B$H$J$k$h$&(B, $BIi$rA*Br$9$k(B.
$\displaystyle X = \Dinv{2}
\left\{
(p_{\rm NH_{3}} + p_{\rm H_{2}S})
- \sqrt{ (p_{\rm NH_{3}} - p_{\rm H_{2}S})^{2}
+ 4 e^{K_{p}} }.
\right\}$     (3.59)

$X$ $B$NK~$?$9$Y$->r7o$O(B,
$\displaystyle 0 \leq X \leq {\rm min}(P_{\rm NH_{3}}, P_{\rm H_{2}S})$     (3.60)

$B$G$"$k(B. $B>e5-$N>r7o$rK~$?$5$J$$>l9g$K$O(B $X = 0$ $B$H$9$k(B.

$X$ $B$,(B (3.63) $B<0$N>r7o$rK~$?$9$J$i$P(B, $B, $q_{v}$, $q_{c}$ $B$r5a$a$k(B.

    $\displaystyle \left[ q_{\rm NH_3} \right]^{t + \Delta t}
= [q_{\rm NH_3}]^{*} + \Delta q_{\rm NH_3},$ (3.61)
    $\displaystyle \left[ q_{\rm H_2S} \right]^{t + \Delta t}
= [q_{\rm H_2S}]^{*} + \Delta q_{\rm H_2S},$ (3.62)
    $\displaystyle \left[ q_{\rm NH_4SH} \right]^{t + \Delta t}
= [q_{\rm NH_3}]^{*}...
...rm H_2S}]^{*}
- [q_{\rm NH_3}]^{t + \Delta t} - [q_{\rm H_2S}]^{t + \Delta t} ,$ (3.63)
    $\displaystyle \left[ \theta \right]^{t + \Delta t}
=
\theta^{*} + \gamma \left(...
...}]^{*}
- [q_{\rm NH_3}]^{t + \Delta t} - [q_{\rm H_2S}]^{t + \Delta t}
\right).$ (3.64)

$B$?$@$7(B, $\gamma = L_{\rm NH_4SH}/({c_{p}}_{d} \Pi)$ $B$G$"$j(B, $\Delta q_{\rm NH_3}$ $B$H(B $\Delta q_{\rm H_2S}$ $B$O$=$l$>$l(B, $B@[email protected](B $X$ $B$KBP1~$9$k(B NH$_3$ $B$H(B H$_2$S $B$N:.9gHf$G$"$k(B. $B290L$,<}B+$9$k$^$GH?I|2~NI$r9T$&(B.

3.3 $BMpN.1?F0%(%M%k%.!<$N<0(B

Klemp and Wilhelmson (1978) $B$*$h$S(B CReSS ($BDZLZ$H:g86FF;V(B, 2001) $B$HF1MM(B $B$K(B, 1.5 $B

$\displaystyle [K_{m}]_{i,k}^{t + \Delta t} = [K_{m}]_{i,k}^{t - \Delta t}
+ 2 \Delta t [F_{K_m}]_{i,k}^{t}$     (3.65)

$B$3$3$G(B,
$\displaystyle [F_{K_m}]_{i,k}^{t}$ $\textstyle =$ $\displaystyle - [{\rm Adv}.K_m]_{i,k}^{t}
+ [{\rm Buoy}.K_m]_{i,k}^{t - \Delta t}
+ [{\rm Shear}.K_m]_{i,k}^{t - \Delta t}$  
    $\displaystyle + [{\rm Turb}.K_m]_{i,k}^{t - \Delta t}
+ [{\rm Disp}.K_m]_{i,k}^{t - \Delta t}$ (3.66)

$B$G$"$k(B. CReSS $B$K$J$i$$(B, $B0\N.9`$r(B $t$ $B$G(B, $B0\N.9`0J30$r(B $t - \Delta t$ $B$GI>2A$7$?(B.

$F_{K_m}$ $B$K4^$^$l$k3F9`$O0J2<$N$h$&$K=q$-2<$9$3$H$,$G$-$k(B.

$\displaystyle [{\rm Adv}.K_m]_{i,k}^{t}$ $\textstyle =$ $\displaystyle \left\{
u_{i(u),k} \left( \DP{K_{m}}{x} \right)_{i(u), k}
\right\...
...
+
\left\{
w_{i,k(w)} \left( \DP{K_{m}}{z} \right)_{i, k(w)}
\right\}_{i,k}^{t}$ (3.67)
$\displaystyle \left[{\rm Buoy}.K_m\right]_{i,k}^{t - \Delta t}$ $\textstyle =$ $\displaystyle - \left\{
\frac{3 g C_{m}^{2} l^{2}}{ 2 \overline{\theta}}
\left(\DP{\theta_{el}}{z} \right)_{i,k(w)}
\right\}_{i,k}^{t-\Delta t}$ (3.68)
$\displaystyle \left[{\rm Shear}.K_m\right]_{i,k}^{t - \Delta t}$ $\textstyle =$ $\displaystyle \left( C_{m}^{2} l^{2} \right)_{i,k}
\left[
\left( \DP{u}{x} \rig...
... \right)_{i,k}
\left[
\left( \DP{w}{z} \right)^{2}
\right]_{i,k}^{t - \Delta t}$  
    $\displaystyle + \left( \frac{ C_{m}^{2} l^{2} }{2} \right)_{i,k}
\left[
\left\{...
...
\left( \DP{w}{x} \right)_{i(u),k(w)}
\right\}_{i,k}^{t - \Delta t}
\right]^{2}$  
    $\displaystyle - \left( \frac{K_{m}}{3} \right)_{i,k}^{t - \Delta t}
\left\{
\le...
...ight)_{i,k}^{t-\Delta t}
+
\left( \DP{w}{z} \right)_{i,k}^{t-\Delta t}
\right\}$ (3.69)
$\displaystyle \left[{\rm Turb}.K_m\right]_{i,k}^{t - \Delta t}$ $\textstyle =$ $\displaystyle \Dinv{2}
\left[
\left\{
\DP{}{x}
\left(
\DP{K_{m}^{2}}{x}
\right)...
...}
\left(
\DP{K_{m}^{2}}{z}
\right)_{i,k(w)}
\right\}_{i,k}^{t-\Delta t}
\right]$  
    $\displaystyle +
\left[
\left\{
\left( \DP{K_{m}}{x}\right)^{2}
\right\}_{i(u),k...
...{
\left(\DP{K_{m}}{z}\right)^{2}
\right\}_{i,k(w)}
\right]_{i,k}^{t - \Delta t}$ (3.70)
$\displaystyle \left[{\rm Disp}.K_m\right]_{i,k}^{t - \Delta t}$ $\textstyle =$ $\displaystyle - \Dinv{2 l^{2}} \left( K_{m}^{2} \right)_{i,k}^{t - \Delta t}$ (3.71)

$B$3$3$G(B $C_{\varepsilon} = C_{m} = 0.2$, $B:.9g5wN%(B $l = \left(\Delta x \Delta z \right)^{1/2}$ $B$H$9$k(B. $B$^$?(B $\theta_{el}$ $B$O0J2<$GM?$($i$l$k(B.
$\displaystyle \theta_{el}$ $\textstyle =$ $\displaystyle \overline{ \theta_{v}} + \theta_{v}^{'} \;\;\; (for \;\; q_{c} = 0)$ (3.72)
$\displaystyle \theta_{el}$ $\textstyle =$ $\displaystyle \overline{\theta_{v}} + \theta_{v}^{'} + \frac{ \sum L
q_{v}}{{c_p}_{d} \bar{\pi}}
\;\;\; (for \;\; q_{c} > 0)$ (3.73)

$B$?$@$7(B,
$\displaystyle \overline{\theta_{v}} + \theta_{v}^{'}$ $\textstyle =$ $\displaystyle \bar{\theta_{v}}
\left\{
1 + \frac{\theta}{\bar{\theta}}
+ \frac{...
...}
- \frac{\sum q_{v} + \sum q_{c} + \sum q_{r}}
{1 + \sum \bar{q_{v}}}
\right\}$ (3.74)

$B$G$"$k(B.

3.4 $B;~4V%U%#%k%?!<(B

$B%j!<%W%U%m%C%0K!$rMQ$$$?$3$H$K$h$C$F@8$8$k7W;;%b!<%I$NA}I}$rM^@)$9$k$?(B $B$a(B, Asselin (1972) $B$N;~4V%U%#%k%?!<$rD9$$;~4V9o$_$G(B 1 $B%9%F%C%W7W;;$9$k(B $BKh$K(B($B $N_{\tau}\equiv 2\Delta t/\Delta
\tau$ $B%9%F%C%W7W;;$9$kKh$K(B)$BE,MQ$9$k(B.

$B$?$H$($P(B(3.6)$B$rMQ$$$F(B $ u^{t + \Delta t}_{i(u),k}$ $B$r7W;;$9$k>l9g(B, $B0J2<$N$h$&$K;~4V%U%#%k%?!<$rE,MQ$9$k(B.

$\displaystyle u^{*}_{i(u),k}$ $\textstyle =$ $\displaystyle u^{\tau + (N_{\tau}-1)\Delta \tau}_{i(u), k}
- \left[
\bar{c_{p}}...
...\DP{(\alpha Div)^{\tau + (N_{\tau}-1)\Delta \tau}}{x}
\right\}
\right]_{i(u),k}$  
    $\displaystyle +
F_{u,i(u),k}^{t} \Delta \tau,$  
$\displaystyle u^{t+\Delta t}_{i(u),k}$ $\textstyle =$ $\displaystyle (1-2 \gamma)u^{t}_{i(u),k} +
\gamma (u^{*}_{i(u),k} + u^{t -\Delta t}_{i(u),k})$ (3.75)

$B$3$3$G(B $\gamma$ $B$O%U%#%k%?!<$N78?t$G$"$j(B, $B$=$NCM$O(B 0.05 $B$rMQ$$(B $B$k(B. (3.7), (3.8)$B$N7W;;$KBP$7$F$bF1MM(B $B$K;~4V%U%#%k%?!<$rE,MQ$9$k(B.

3.5 $B%9%]%s%8AX(B

$B6-3&LLIU6a$G$NGH$NH?

$\displaystyle \DP{\phi}{t} = -{\rm Adv}.\phi + \cdots + \gamma_{h}(x) (\phi - \phi_{e})
+ \gamma_{v}(z) (\phi - \phi_{e})$     (3.76)

$B$?$@$7(B, $\phi$ $B$OG$0U$NM=JsJQ?t$G$"$j(B, $\phi_{e}$ $B$O5R4Q2r@OCMEy$N4{CN$N(B $BCM$G$"$k(B. $B$3$N9`$O(B1 $B$DA0$N%?%$%`%9%F%C%W(B $t - \Delta t$ $B$G7W;;$5$l(B, $B>.$5$$%?%$%`%9%F%C%W$G07$o$l$kM=JsJQ?t$KBP$7$F$b(B, $B0\N.9`$d?tCMG4@-9`$HF1MM$K(B $2 \Delta t$ $B$NBg$-$J%?%$%`%9%F%C%W4V$NCM$H$7(B $B$FI>2A$5$l$k!#6qBNE*$K$O(B,
    $\displaystyle [\pi]^{t + \Delta t} = 2 \Delta t
\left\{
[{\rm Adv}.\pi]^{t}
+ \...
...gamma_{h}(x) + \gamma_{v}(z)
\right\} (\pi - \bar{\pi})^{t - \Delta t}
\right\}$ (3.77)
    $\displaystyle [u]^{t + \Delta t} = 2 \Delta t
\left\{
[{\rm Adv}.u]^{t}
+ \cdots
+ \left\{
\gamma_{h}(x) + \gamma_{v}(z)
\right\} [u]^{t - \Delta t}
\right\}$ (3.78)
    $\displaystyle [w]^{t + \Delta t} = 2 \Delta t
\left\{
[{\rm Adv}.w]^{t}
+ \cdots
+ \left\{
\gamma_{h}(x) + \gamma_{v}(z)
\right\} [w]^{t - \Delta t}
\right\}$ (3.79)
    $\displaystyle [\theta]^{t + \Delta t} = 2 \Delta t
\left\{
[{\rm Adv}.\theta]^{...
...\left\{
\gamma_{h}(x) + \gamma_{v}(z)
\right\} [\theta]^{t - \Delta t}
\right\}$ (3.80)

$B$H$9$k(B. $BC"$7(B $\bar{\pi}$ $B$O%(%/%9%J!<4X?t$N4pK\>l$G$"$k(B.

$\gamma_{h}, \gamma_{v}$ $B$O$=$l$>$l?eJ?J}8~$K$O3F6-3&LL$K8~$+$C$F(B, $B1tD>(B $BJ}8~$K$O>e6-3&LL$K8~$+$C$F>.$5$/$J$k8:?j78?t$G$"$k(B. $B$3$l$i$N8:?j78?t$O(B, $B?eJ?J}8~$K$O5[<}AX$N8|$_$r(B $d_{h}$ $B$H$7(B, $x$ $B$NHO0O$r(B $0 \leq x \leq
x_{max}$ $B$H$9$l$P(B,

    $\displaystyle \gamma_{h} = \alpha_{h} \left( 1 - \frac{x}{d_{h}}\right)^{3}
\hspace{5em} (x < d_{h}),$  
    $\displaystyle \gamma_{h} = 0 \hspace{10em} ( d_{h} \leq x \leq x_{max} - d_{h}),$  
    $\displaystyle \gamma_{h} = \alpha_{h} \left( 1 - \frac{(x_{max} - x)}{d_{h}}\right)^{3}
\;\; (x > x_{max} - d_{h}),$ (3.81)

$B$G$"$j(B, $B1tD>J}8~$K$O5[<}AX$N8|$5$r(B $d_{v}$ $B$H$7(B, $z$ $B$NHO0O$r(B $0 \leq z \leq z_{max}$ $B$H$9$l$P(B,
    $\displaystyle \gamma_{v} = 0 \hspace{12em} ( z \leq z_{max} - d_{v}),$  
    $\displaystyle \gamma_{v} = \alpha_{v} \left
( 1 - \cos{\frac{\pi (z - z_{max} - d_{v})}{d_{v}}}
\right)^{3}
\;\; (z > z_{max} - d_{v}),$ (3.82)

$B$G$"$k(B. $B$3$3$G(B, $\alpha_h, \alpha_v$ $B$O$=$l$>$l?eJ?!&1tD>J}8~$N8:?jDj?t(B $B$G$"$k(B. $\alpha_h, \alpha_v$ $B$O;~4V$N5U?t$N $1/\alpha_{h}, 1/\alpha_{v}$ $B$O(B e-folding time $B$H8F$P$l$k(B. e-folding time $B$ODL>o(B 100 - 300 s $B$K@_Dj$9$k(B. $B$^$?5[<}AX$N8|$_(B $d_{h}, d_{v}$ $B$O$=$l$>$l(B, $B?eJ?J}8~$K$O?t3J;RJ,(B, $B1tD>J}8~$K$O>eLL$+$i(B1/3 $BDxEY@_Dj$9$l$PNI$$(B.


next up previous
: 4. $B;29MJ88%(B : 2 $B : 2. $B6u4VJ}8~$NN%;62=(B
SUGIYAMA Ko-ichiro $BJ?@.(B22$BG/(B3$B7n(B5$BF|(B