next up previous
: $B$3$NJ8=q$K$D$$$F(B... : 4 $B=>Mh$NO@J8$H$NHf3S(B : 4.1 Achterberg and Ingersoll

4.2 $BCfEg(B (1998)

$BCfEg(B (1998) $B$O<>=aCGG.29EY8:N($H@EE*0BDjEY$r0J2<$N$h$&$KM?$($?(B. $B$?$@$7J*M}NL$r<($9J8;z$rJQ$($F$"$k(B.

$\displaystyle \DD{T}{z}$ $\textstyle =$ $\displaystyle - \frac{g}{{c_{p}^{\dagger}}_{d}}
\left(
\frac{ 1 + \frac{\lambda...
...lambda^{\dagger}}^{2} q}{R_{v}^{\dagger} {c_{p}^{\dagger}}_{d} T^{2}} }
\right)$ (63)
  $\textstyle =$ $\displaystyle - \frac{g}{{c_{p}^{\dagger}}_{d}}
\left\{ 1 - \left(
\frac{\lambd...
...\right)
\frac{\lambda^{\dagger} q^{\dagger}}{{c_{p}^{\dagger}}_{d} T}
\right\}.$ (64)
$\displaystyle N^{2}$ $\textstyle =$ $\displaystyle \frac{g}{T}
\left(
\DD{T}{z} + \frac{g}{{c_{p}^{\dagger}}_{d}}
\right)
+ g \left(\frac{M_{d}}{M_{v}} - 1 \right) \DP{ (rq)}{z},$ (65)
  $\textstyle \approx$ $\displaystyle \frac{g^{2}}{{c_{p}^{\dagger}}_{d} T}
\left(
\frac{\lambda^{\dagg...
...r}}{{c_{p}^{\dagger}}_{d} T}
+ \left(1 - \frac{M_{d}}{M_{v}} \right)
\right\} q$ (66)

$B$?$@$7E:;z(B $\dagger$ $B$NIU$$$?NL$OC10L $R_{d}^{\dagger} = R/M_{d}$ $B$O4%[email protected],$NC10L $R_{v}^{\dagger} = R/M_{v}$ mail protected],(B $B$NC10L ${c_{p}^{\dagger}}_{d}=c_{p}/M_{d}$ $B$OC10L $\lambda^{\dagger}=\lambda/M_{v}$ $B$OC10L $B$O>e>:[email protected],$N:.9gHf$G$"$j(B, $B5$2t$N<~0O$NBg(B $B5$$N:.9gHf$r<>EY(B $r$ $B$rMQ$$$F(B $r q$ $B$H$7$?(B.

$B0J2<$G$O(B, $BA0@a$G5a$a$?<>=aCGG.29EY8:N($H@EE*0BDjEY$,(B, $B$=$l$>$l(B (63), (65) $B<0$GI=8=$5$l$k$3$H$r<($9(B. $B$^$?(B ([*]) $B$H(B (65) $B<0$rJQ7A$9$k$3$H$G(B (64) $B$H(B (66) $B<0$,$=$l$>$lF3$+$l$k$3$H$r<($9(B.

(63) $B<0$O(B (60) $B<0$K$*$$$F(B, $M \approx M_{d},
R^{\dagger}_{v} = R^{\dagger} / \varepsilon$ $B$H$9$k$3$H$GD>$A$K5a$^(B $B$k(B. mail protected],$N>/$J$$$H$9$k>r7o$,@.N)$9$k>l9g$K$O(B $ 1 \gg
\frac{{\lambda^{\dagger}}^{2} q}{R_{v}^{\dagger} {c_{p}^{\dagger}}_{d}
T^{2}} $ $B$H$J$k$N$G(B, (64) $B<0$O0J2<$N$h$&$KF3=P$5$l$k(B.

$\displaystyle \DD{T}{z}$ $\textstyle =$ $\displaystyle - \frac{g}{{c_{p}^{\dagger}}_{d}}
\left(
\frac{ 1 + \frac{\lambda...
...mbda^{\dagger}}^{2} q}{R_{v}^{\dagger} {c_{p}^{\dagger}}_{d} T^{2}} }
\right) ,$  
  $\textstyle \approx$ $\displaystyle - \frac{g}{{c_{p}^{\dagger}}_{d}}
\left( 1 + \frac{\lambda^{\dagg...
...\lambda^{\dagger}}^{2} q}{R_{v}^{\dagger} {c_{p}^{\dagger}}_{d} T^{2}}
\right),$  
  $\textstyle =$ $\displaystyle - \frac{g}{{c_{p}^{\dagger}}_{d}}
\left\{ 1 - \left(
\frac{\lambd...
...\right)
\frac{\lambda^{\dagger} q^{\dagger}}{{c_{p}^{\dagger}}_{d} T}
\right\}.$  

$B$?$@$7(B $q$ $B$N(B 2 $Br7o$N>l9g(B, $B$3$N6a;w$,@.N)$9$k>r7o$O$*$*$h$=(B $q
\ll 2.0 \times 10^{-2}$ $B$G$"$k(B.

$B@EE*0BDjEY$N<0(B (65) $B$O(B, $B@EE*0BDjEY$N<0(B (55) $B$K$*$$$F(B, $BC10L%b%kEv$?$j$N(B $BNL$rC10L/$J$$>r7o2<$G$N%b%kHf$H:.9gHf$N4X78<0(B (61) $B$*$h$SJ,;RNL$N4X78(B (62) $B$rMQ$$$k$3$H$G5a$^$k(B.

$\displaystyle N^{2}$ $\textstyle =$ $\displaystyle \frac{g}{T}
\left(
\Gamma_{m} + \frac{M g}{{c_{p}^{\dagger}}_{d} M}
\right)
-
g \left(
\frac{r (M_{v} - M_{d})}{M} \DD{X}{z}
\right)$  
  $\textstyle =$ $\displaystyle \frac{g}{T}
\left(
\Gamma_{m} + \frac{ g}{{c_{p}^{\dagger}}_{d}}
...
...
g \left(
\frac{r (M_{v} - M_{d})}{M_{d}} \frac{M_{d}}{M_{v}} \DD{q}{z}
\right)$  
  $\textstyle =$ $\displaystyle \frac{g}{T}
\left(
\Gamma_{m} + \frac{ g}{{c_{p}^{\dagger}}_{d}}
\right)
+
g \left(
\frac{M_{d}}{M_{v}} - 1
\right) \DD{(r q)}{z}$  

$B$?$@$7(B $dT/dz = \Gamma_{m}$ $B$H$7$?(B. $B$5$i$K(B (65) $B<0$NJQ7A$r(B $B9T$&(B. (31) $B<0$r(B $dq/dz$ $B$N<0$K=q$-49$($k$H(B,
$\displaystyle \DD{ ( r q )}{z}$ $\textstyle =$ $\displaystyle \left(
\frac{ \lambda^{\dagger} M_{v} }{ R^{\dagger}_{d} M_{d} T^{2}} \DD{T}{z}
+ \frac{M g }{ R^{\dagger}_{d} M T}
\right) (r q) ,$  
  $\textstyle =$ $\displaystyle \left(
- \frac{ \lambda^{\dagger} }{ R^{\dagger}_{v} T^{2}} \frac{g}{{c_{p}^{\dagger}}_{d}}
+ \frac{g }{ R^{\dagger}_{d} T}
\right) (r q) ,$  
  $\textstyle =$ $\displaystyle \frac{g}{{c_{p}^{\dagger}}_{d} T}
\left(
\frac{ {c_{p}^{\dagger}}...
...\dagger}_{d} }
- \frac{ \lambda^{\dagger} }{ R^{\dagger}_{v} T}
\right) (r q) .$ (67)

$B$H$J$k(B. $B$?$@$7(B $q$ $B$O>.$5$$$N$G(B, $dT/dz \approx - g /{c_{p}^{\dagger}}_{d}$ $B$H$7$?(B. (67) $B<0$H(B (64) $B<0$r(B (65) $B<0$K(B $BBeF~$9$k$3$H$G(B, (66) $B<0$,F@$i$l$k(B.
$\displaystyle N^{2}$ $\textstyle =$ $\displaystyle \frac{g}{T}
\left(
\Gamma_{m} + \frac{ g}{{c_{p}^{\dagger}}_{d}}
\right)
+
g \left(
\frac{M_{d}}{M_{v}} - 1
\right) \DD{(r q)}{z}$  
  $\textstyle =$ $\displaystyle \frac{g}{T}
\left[
\frac{g}{{c_{p}^{\dagger}}_{d}}
\left\{ \left(...
...{d} }
- \frac{ \lambda^{\dagger} }{ R^{\dagger}_{v} T}
\right) (r q)
\right\} ,$  
  $\textstyle =$ $\displaystyle \frac{g^{2}}{{c_{p}^{\dagger}}_{d} T}
\left(
\frac{\lambda^{\dagg...
...{c_{p}^{\dagger}}_{d} T}
+
r \left(
1 - \frac{M_{d}}{M_{v}}
\right)
\right\} q.$  


next up previous
: $B$3$NJ8=q$K$D$$$F(B... : 4 $B=>Mh$NO@J8$H$NHf3S(B : 4.1 Achterberg and Ingersoll
SUGIYAMA Ko-ichiro $BJ?@.(B17$BG/(B8$B7n(B21$BF|(B