next up previous
: 3.1 $BJ,;RNL$HHfG.(B : $B1@L)EY!&@EE*0BDjEY$N7W;;J}K!(B : 2.3 $B@EE*0BDjEY(B

3 $BLZ@1$N?e1@$rA[Dj$7$?7W;;Nc(B

$BK\@a$G$O(B, $BLZ@1$N?e1@$rA[Dj$7$?7W;;Nc$r<($9(B. $BBg5$$N4%[email protected],$H$7$F?eAG$H%X%j%&%`$N:.9gBg5$(B(H/He = 0.095), $B<>[email protected],$H$7$F?e$rA[Dj$9$k(B. $B$=$7$F29EY(B, $BAjJQ2=$N%(%s%?%k%T!<$r8GDj$7(B, $B?e$N%b%kHf$rJQ2=$5$;$?>l9g$NCGG.29EY8:N($H@EE*0BDjEY$N(B $BJQ2=$rD4$Y$k(B.

$B7W;;$GMQ$$$kJ*M}NL$K$D$$$F9M;!$9$k(B. $B29EY$r8GDj$7$?>l9g(B, $BAjJQ2=$N%(%s%?%k%T!<$O%/%i%&%8%&%9(B-$B%/%i%Z%$%m%s$N<0$H(B $BK0OB>x5$05$N<0$+$iF@$i$l$k(B. $B?e$NK0OB>x5$05$N<0$H$7$F(B Antoine $B$N<0$r(B $BMxMQ$9$k>l9g(B, $B$=$NCM$O0J2<$N$h$&$KM?$($i$l$k(B($B2=3XJXMw(B $B2~D{Bh;MHG(B).

$\displaystyle \ln{e}$ $\textstyle =$ $\displaystyle A - \frac{B}{C + T},$  
$\displaystyle $B$?$@$7(B$   $\displaystyle A = 7.9186968d0$  
    $\displaystyle B = 1636.909d0$  
    $\displaystyle C = 224.92d0$  

$B$?$@$7>e5-$N(B $e$ $B$NC10L$O(B mmHg $B$G$"$j(B, $T$ $B$NC10L$O(B $^{\circ}$C $B$J$N$G(B, SI $BC10L7O$KJQ49$9$k$H(B,
$\displaystyle \ln{e} = \left(
A - \frac{B}{C + T - 273.15 }
\right) \ln{10} + \ln{133.322}$     (44)

(44) $B<0$r(B (30) $B<0$KBeF~$9$k$H(B, $BAjJQ2=$N%(%s%?%k%T!<$O0J2<$N$h$&$KI=8=$5$l$k(B.
$\displaystyle \lambda$ $\textstyle =$ $\displaystyle R T^{2} \DD{\ln{e}}{T}$  
  $\textstyle =$ $\displaystyle R T^{2} \frac{B * \ln{10}}{ ( C + T - 273.15 )^2 }$ (45)

$B0J>e$N5DO@$rF'$^$($?>e$G7W;;$KMxMQ$9$kJ*M}NL$H%Q%i%a%?$r$^$H$a$k$H(B $B0J2<$N$h$&$K$J$k(B.
$BDj?t0lMw(B
 

  $B4%[email protected],(B $B<>[email protected],(B($B?e(B)
$BJ,;RNL(B (kg/mol) $18 \times 10^{-3}$ $2.323 \times 10^{-3}$
$BHfG.(B (J/K mol) 33.5 27.66
$B=ENO2CB.EY(B (m/s$^2$) 23.2
$B5$BNDj?t(B 8.314

$B
 

  $B29EY(B $BAjJQ2=$N%(%s%?%k%T!<(B
  (K) (J/K mol)
$B%1!<%9(B 1 200 54417
$B%1!<%9(B 2 300 44492
$B%1!<%9(B 3 400 40518
$B%1!<%9(B 4 500 38384

$B=>Mh$N8&5f$G$O(B, $BLZ@1Bg5$$K4^$^$l$k?e$N%b%kHf$O==J,>.$5$$$b$N$H$7$F(B $BCGG.29EY8:N($*$h$S@EE*0BDjEY$r6a;w$7$?<0$,$7$P$7$PMQ$$$i$l$F$-$?(B. $B$^$:$OLZ@1Bg5$$K$*$1$k%b%kHf$r==J,>.$5$$$H$9$k6a;w$N>r7o$r5a$a$k(B. $B$D$$$G==J,Bg$-$$$H$9$k6a;w$N>r7o$b5a$a$k$3$H$H$9$k(B 1.

mail protected],$N>/$J$$6a;[email protected])$9$k>r7o(B $\Deqref{lapserate:Cond_LapseRate_low}$ $B<0$O0J2<$N$h$&$K=q$1$k(B.

$M \approx M_{d}$ mail protected])>r7o(B

$\displaystyle \frac{(M_{v} - M_{d}) X}{M_{d}}$ $\textstyle =$ $\displaystyle \frac{(18.0 - 2.323) \times 10^{-3}}{ 2.323 \times 10^{-3} },$  
  $\textstyle =$ $\displaystyle 6.7486 X
\ll 1.$  
$\displaystyle X$ $\textstyle \ll$ $\displaystyle 1.5 \times 10^{-1}.$ (46)

$c_{p} \approx {c_{p}}_{d}$ mail protected])>r7o(B

$\displaystyle \frac{( {c_{p}}_{v} - {c_{p}}_{d} ) X}{ {c_{p}}_{d}}$ $\textstyle =$ $\displaystyle \frac{23.5 - 27.66}{27.66}X,$  
  $\textstyle =$ $\displaystyle 0.21 X \ll 1.$  
$\displaystyle X$ $\textstyle \ll$ $\displaystyle 4.76.$ (47)

$\frac{ \lambda X}{R T} \ll 1$ mail protected])>r7o(B

$\displaystyle \frac{ \lambda X}{R T}$ $\textstyle =$ $\displaystyle \frac{44492}{8.31 \times 300} X$  
  $\textstyle =$ $\displaystyle 17.8 X \ll 1.$  
$\displaystyle X$ $\textstyle \ll$ $\displaystyle 5.6 \times 10^{-2}.$ (48)

$\frac{ \lambda^{2} X}{ c_{p} R T^{2} } \ll 1 $ mail protected])>r7o(B

$\displaystyle \frac{ \lambda^{2} X}{ c_{p} R T^{2} }$ $\textstyle =$ $\displaystyle \frac{(44492)^{2}}{30 \times 8.31 \times (300)^{2}} X$  
  $\textstyle =$ $\displaystyle 88 X \ll 1.$  
$\displaystyle X$ $\textstyle \ll$ $\displaystyle 1.1 \times 10^{-2}.$ (49)

$B0J>e$h$j(B, (36) $B<[email protected])>r7o$rA4$FK~$?$9(B $B%b%kHf$NHO0O$O(B $X \ll 1.1 \times 10^{-2}$ $B$G$"$k(B.

mail protected],$NB?$$6a;[email protected])$9$k>r7o(B $\Deqref{lapserate:Cond_LapseRate_high}$ $B<0$O0J2<$N$h$&$K=q$1$k(B.

$M \approx M_{v}$ mail protected])>r7o(B

$\displaystyle X \approx 1.$     (50)

$c_{p} \approx {c_{p}}_{v}$ mail protected])>r7o(B

$\displaystyle X \approx 1.$     (51)

$\frac{ \lambda X}{R T} \gg 1$ mail protected])>r7o(B

$\displaystyle \frac{ \lambda X}{R T}$ $\textstyle =$ $\displaystyle \frac{44492}{8.31 \times 300} X$  
  $\textstyle =$ $\displaystyle 17.8 X \gg 1.$  
$\displaystyle X$ $\textstyle \gg$ $\displaystyle 5.6 \times 10^{-2}.$ (52)

$\frac{ \lambda^{2} X}{ c_{p} R T^{2} } \gg 1 $ mail protected])>r7o(B

$\displaystyle \frac{ \lambda^{2} X}{ c_{p} R T^{2} }$ $\textstyle =$ $\displaystyle \frac{(44492)^{2}}{30 \times 8.31 \times (300)^{2}} X$  
  $\textstyle =$ $\displaystyle 88 X \gg 1.$  
$\displaystyle X$ $\textstyle \gg$ $\displaystyle 1.1 \times 10^{-2}.$ (53)

$B%b%kHf$NHO0O$O(B $X \le 1$ $B$J$N$G(B, (50)-(53) $B$,(B mail protected])$9$k%b%kHf$NHO0O$O(B $X = 1$ $B$N$4$/6aK5$N$_$G$"$k(B. $B$7$+$7LZ@1Bg5$$K$*[email protected],$N%b%kHf$,(B 1 $B$H$J$k>u67$O(B $B$^$:9M$($i$l$J$$$N$G(B, mail protected],$NB?$$6a;w$,@.N)$9$k$3$H$OL5$$(B.

$B0J2<$G$OLZ@1Bg5$>r7o$G$N4%AgCGG.29EY8:N((B, $B<>=aCGG.29EY8:N((B, $B@EE*0BDjEY$K$D$$$F(B, $B


... $B$D$$$G==J,Bg$-$$$H$9$k6a;w$N>r7o$b5a$a$k$3$H$H$9$k(B1
mail protected],$G$"$k%a%?%s$d%"%s%b%K%"$K$D$$$FF1MM$N5DO@$r9T$C$F$b(B, mail protected],$N>/$J$$6a;w$HB?$$6a;w$,@.N)$9$k>r7o$O$[$H$s$IJQ$o$i$J$$(B. $BLZ@1>r7o$G$N2=9gJ*$NBeI=E*$J?tCM$O0J2<$NDL$j(B. $B?e(B, $B%"%s%b%K%"(B, $B%a%?%s$N@xG.(B($B>xH/%(%s%?%k%T!<(B)$B$H6E=L29EY$O2=3X(B $BJXMw$NBh(B 9.4 $B@a!VE>0\$N%(%s%?%k%T!
$BJ*M}NL(B $B?e(B $B%"%s%b%K%"(B $B%a%?%s(B
$B@xG.(B [J/mol] $40.66 \times 10^{3}$ $23.35 \times 10^{3}$ $8.180 \times 10^{3}$
$B6E=L29EY(B [K] $373.15$ $195.40$ $90.68$



next up previous
: 3.1 $BJ,;RNL$HHfG.(B : $B1@L)EY!&@EE*0BDjEY$N7W;;J}K!(B : 2.3 $B@EE*0BDjEY(B
SUGIYAMA Ko-ichiro $BJ?@.(B17$BG/(B8$B7n(B21$BF|(B